http://www.patentlens.net/

enabling INNOVATION

US 20080071748A1

a2) Patent Application Publication (o) Pub. No.: US 2008/0071748 A1

a9y United States

Wroblewski et al.

43) Pub. Date: Mar. 20, 2008

(54) METHOD AND SYSTEM FOR STORING,
ORGANIZING AND PROCESSING DATA IN A
RELATIONAL DATABASE

Jakub Z. Wroblewski, Lomianki
(PL); Cas (Kazimierz)
Apanowicz, Toronto (CA);
Victoria K. Eastwood, Toronto
(CA); Dominik A. Slezak,
Warszawa (PL); Piotr D. Synak,
Warszawa (PL); Arkadiusz G.
Wojna, Warszawa (PL); Marcin
Wojnarski, Warszawa (PL)

(75) Inventors:

Correspondence Address:

OGILVY RENAULT LLP

1981 MCGILL COLLEGE AVENUE, SUITE
1600

MONTREAL, QC H3A2Y3

(73) Assignee: INFOBRIGHT INC., Toronto

(CA)

(21) Appl. No.:

¢ Start D)

v 302

L Select column data for compression l

11/854,788

~~ 304

[QObtain column data

e 306

Calculate DPN

(22) Filed: Sep. 13, 2007

Related U.S. Application Data

(60) Provisional application No. 60/845,167, filed on Sep.
18, 2006.

Publication Classification

(51) Int. CL
GOGF 17/30 (2006.01)

(52) US. CL oo 707/3; 707/E17.014
(57) ABSTRACT

A system and method of processing a data query in a data
processing system is provided. The data in the data process-
ing system includes a plurality of individual data elements.
The data elements are grouped and stored in at least one data
unit. The information about the at least one data unit is
gathered and stored in at least one information unit. The
method comprises receiving the data query to be executed;
using the information in the at least one information unit to
optimize and execute the query; resolving the data query;
and returning results of the data query for use by the data
processing system.

/ 300

DPN 222

(analytical information, optionally outliers)

v 308
Select compression algorithm based on data type
of column data

null mask 404

compressed

l /I 310
J

Create Null Mask for column data

/312
.| Compress null null mask 410
i mask

l /‘ 314
Remove Null values to obtain reduced data set
l 316
Select parameters for compression algorithm based on
DPN information
n 320
v £~ 318 DP 221 Y v
L Compression]l :{ Store DP and DPN l

v
C End D)

http://www.patentlens.net/

enabling INNOVATION

http://www.patentlens.net/

—
< sannnn
R
=
— ainpo —
M > uonea1d) Ny 1"O1d
S~
) - 2NpoON
m 71 uoissardwo)
M (494 {.\\u_zvcvf_oﬁ_:__
= 8pT
asequeq _ SINpoON;
= [ewIaixg < u015$31dWo23(]
- %
= ¥$T ~1 a[npopy vodxg
A €0T 0sz sousuels SoNSNElS
° A 4 a5esn 4d Liond
=
2 aseqered < SN
R
(==
= 102 A vz =k
=3
o
B
s

A _ Y \ 4

npo Jo3eusy pun pzinmdQ pun
m uoissarduiossq a8pajmouy - a3pajarouy
= S
x T A A (1174
b 9T 02z J
m y Y
Dn.... INpo Jeziundo sozpwndg
< A « uoneIuasaiday e Jasied Kand) e »- 2l
M uonndaxy A1ond And £1and)
- p—
= A 70T -/
S orz s0c </ g0z voz
E :
SHUSAL Aland NeIPpANLINIL —_—
<« n\ ! P 00C SWEICII
= 002
L
N
3]
A

http://www.patentlens.net/

enabling INNOVATION

http://www.patentlens.net/

US 2008/0071748 A1

Mar. 20, 2008 Sheet 2 of 17

Patent Application Publication

260

264

FIG.2

http://www.patentlens.net/

enabling INNOVATION

http://www.patentlens.net/

US 2008/0071748 A1

Mar. 20, 2008 Sheet 3 of 17

Patent Application Publication

0z¢

pug)

NdQ pue dg 241018 <

t "OId

4

A A

01 sew jnu

Nsewt
jiu ssaudwo))

1cc da

o1 4

p1e~" 3

¢

uoissaiduio)

- 1

uonewIojul Ndd
uo paseq unfiio3[e uoissasdwos oj simewered 199)9g

195 BIEP PIONPal UIRIGO 0} SANJBA [|NN QACWSY

<
<

passaidwod e s

PO ysew |[nu

ale

v A

2IEp UUINJOD 0] YSEJA |INN 2183I1D

EJep uwinjood jo
2dA1 eiep vo paseq wiyiLiog|e uoissaidwod 193[9S

80¢ I

(s1a1pin0 Kjjeuondo ‘uoneuuojur jesnAjeue)

00¢ 7

TTT Ndd

90c ~ t

<

ot

e ~ 4

~ F §

NdQ s3e[no[ed

BIEP UWIN[OD UIBIGO)

uo1ssaiduiod 10§ eep uwInod 139§

(p

http://www.patentlens.net/

enabling INNOVATION

http://www.patentlens.net/

US 2008/0071748 A1

Mar. 20, 2008 Sheet 4 of 17

Patent Application Publication

¥ "OId 90 195 BIEp PadNpay

172 Yord ereq AU

¢ Ndd

T

S0y Yysew 2130

000¢

(4

CCTNdd

i)

YOp ASe [INN

ol e

—

TOt uwnjod [ened

(4

TINN

L

8

9

TINN

TINN

0006

TINN

http://www.patentlens.net/

enabling INNOVATION

http://www.patentlens.net/

US 2008/0071748 A1

Mar. 20, 2008 Sheet 5 of 17

Patent Application Publication

S "OIAd

()

eJRp ULIN[Od Jeuldiio
uleIqo 031 paonpal eiep padnpal 01 ysew [jnu A|ddy

90s ﬂ

135 ejep pasnpal ureiqo o) yoed eiep ssaidwossg

0¢s r\\ %

2d£1 eep uo paseq wyLioF|e uoissaadwodap 199[95
208 J a
00S e m Hels U

http://www.patentlens.net/

http://www.patentlens.net/

Patent Application Publication

Data elements 602

FIG. 6A

o)

v

HIST object 604

enabling INNOVATION

Mar. 20, 2008 Sheet 6 of 17 US 2008/0071748 Al
o)
&
&
Yo
£
%
o
=
)
- =]
So|l—~|lo|loj~|o|o]e IS 2
% 3,
g_moo ol-lojo o "8
gm-—-oooooo (=] 2
s 2
g——o-——-oooo o L
Q
V2 < MM O Q WL QO —_
~ A
\0
=)
o
A
g <y
og =
£ EEE%
> S|&|5|E
b @]
Qa

http://www.patentlens.net/

enabling INNOVATION

http://www.patentlens.net/

US 2008/0071748 A1

Mar. 20, 2008 Sheet 7 of 17

Patent Application Publication

J9 "OlA
0L00OLOOOC!L L000LOLOL
OLILLOLOOL 0L0lL00000O0
0L0O0OOQOLLO 0000LO0OLOO

/ws L<d /@G
9z <4 ANV
40 Wop, =9
TINN=D
l000LOLOL L000LOLOL
OLOLOLOOL 0OLLL0LOOO
0L00L0LOO 000010100
Y
/Eo /NG
hAm nEov-“O
L1CO0LOLOL
OLLLOLOOL
Y 10} dVIND 0LO0O0LOLLO

019

http://www.patentlens.net/

enabling INNOVATION

http://www.patentlens.net/

Patent Application Publication = Mar. 20, 2008 Sheet 8 of 17 US 2008/0071748 A1

O NI~ | N o N~ |
non n N
w| O |~ 5| e] e
Es Ex
<t o)
3 3
A A
o
\&
)
Ju—
e
N
<9
Q0 Q —~NOo|m NN IO
@ 5 q
: i N
- (28] u o w0 O
9
L0
4]
- < - | O\ — | O

http://www.patentlens.net/

enabling INNOVATION

http://www.patentlens.net/

US 2008/0071748 A1

Mar. 20, 2008 Sheet 9 of 17

Patent Application Publication

VL “OId
weays 191 4—g \ \
go. —/
. $00[q : : ¥o01q w w ¥o0Iq ‘
.| uoissaxdwoy | - uoissardwo) | - | woissaxdwo) | 0L
upoL—t & W apoL—t : m N
oL - . 9oL
dino a9y ndjno m1.y- :
N A|1.|l e _n— _— g 193[J eje « : _L” v ” _ 10£
9] ereqg : m m m 1211y vleq : ndul eleq
uzoL .\ qzoL \ \ 0L
qe0L ee0L
ugQL adess aSeis Iy a8e)s 1Ay
1313 uotssaudwo)) voissarduwio) uorssardwo))

http://www.patentlens.net/

enabling INNOVATION

http://www.patentlens.net/

US 2008/0071748 A1

Mar. 20, 2008 Sheet 10 of 17

Patent Application Publication

C)

A

ON

4. D14

(sa8eys 19y

uoissarduwod aow Auy

0zL sop

|

indjno
I3)[1] 01 viep patolfy Sululewal pUSS ‘WEanS

81L ~_J 1oy o) puas pue zjep uononnsuodas ssardwo)
7y

”

y00]q uoissaidiuod 0}
91L —_] eiep uononisuosal puas ‘ejep o1 1)y eyep A ddy
X

SIA

\30 alqeidessg~_

ON 2.:.>oh_ 193113 elep mmo@ \
\I/L/ \\
PiL ™

apeaseds
Y3 ut a5e1s 1)) UoISSAIdWIOD INAU Qjen|eAY

ClL
ﬁ

[
01L L opeases 19)jy oty 03 viep Indyj T
7 Y

C)

http://www.patentlens.net/

enabling INNOVATION

http://www.patentlens.net/

US 2008/0071748 A1

Mar. 20, 2008 Sheet 11 of 17

Patent Application Publication

SJARIK|

8vL

oL

1472

(475

orL

C p

ON

¢saders

191]1 210w Auy SO

05 —_/

|

Y

38e3s J2)|1 3X5U Joj
mdur se yndyno spiaoig

[

ndino 03 ayum pue eiep
JOTUISTOD31 0} UOTIRULIOJUT UONONISUOISI 3S)

f (474

A

[

weans
19)[1} WO UOLBWLIOJUT UOLIONLYSUOIAT JORIXT

A

a5eis 10)j1) YSnody) premyoeq asIaARI],

A

~ 3ouanbas *

apedsed 191§ 01 Indul 13y apiaolg

Aydwa oy indur 133j13 az1jeniu|

A

C p

Tlillilll

http://www.patentlens.net/

enabling INNOVATION

http://www.patentlens.net/

US 2008/0071748 A1

Mar. 20, 2008 Sheet 12 of 17

Patent Application Publication

pis
a3de1s 13)[1J 1Xau

03 Indino s

718 sonjeA aiey

018
wesng 131
.
8 "OIA
808 12p0D
F Y
\
\
,, uoynqLusi(y
i Aujiqeqoid
\
oS3 ¢ [4 S 253 € € (089} ¢ ,.
908 sanjeA uanbaig ,,
\
€ O |
[4 S
Z £
€ <
Kouanbaiyg [oquiAs
08 A1ruotdIg
14 € A ¢ H [4 € 9 Z

Z08g eieq wndug

http://www.patentlens.net/

enabling INNOVATION

http://www.patentlens.net/

US 2008/0071748 A1

Mar. 20, 2008 Sheet 13 of 17

Patent Application Publication

018
ureang a4

s\

€ 0S3
[4 S
C £
6 "OId € 4
Kouanbaiy |oquIAS
"N_ $08 Areuonaiq
//
AN
uonnqrusiq ™
Anpqeqold N
AY
AN
N\
y
808 19p0D
a%e1s
191§ snotaaxd
woy mdino \ 4
osd osd | ¢ € [0Ssd| ¢
v 918 sanjeA wsnbaij papoda
14 I 9
218 SanjeA aley
A
14 I 4 £ 9 4

818 vie(q indu] pazonnsuoday

http://www.patentlens.net/

enabling INNOVATION

http://www.patentlens.net/

Patent Application Publication = Mar. 20, 2008 Sheet 14 of 17 US 2008/0071748 A1

<O
<o
o
Py
32
f(D E— =
L}
& e
2 -
= e
R
o]
ol
@
ot
b~
[] P
S
=y
5 g
o f <
o —
pood
g
0
&
h“ 3,
- Q
rrrme— o)
| S
o =
['D
S f—

FIG. 10

http://www.patentlens.net/

enabling INNOVATION

http://www.patentlens.net/

US 2008/0071748 A1

Mar. 20, 2008 Sheet 15 of 17

Patent Application Publication

6011 ——~

IT"Ol4
()
So1ISHEeIS
And) _A’
Ja10|dxg L1nd 8011
asNOYaIBAY
Arepuosag
9[0SU0)) JudWITeUBY
SNoyaIBA Paial]
[ARN
Y
Lot M
Y Avn Anon
voduy uodxy
3D1AIDG A4
JuRBRURN QOf - — _ _ _ — 3
Aun ARIN
uodx3 yoduyy
€011
asnoyaiem
Krewj
0011—""
o1l

J9zAeuy o Aend

om__.\ ;

uopednddy
WIAD

http://www.patentlens.net/

enabling INNOVATION

http://www.patentlens.net/

US 2008/0071748 A1

Mar. 20, 2008 Sheet 16 of 17

Patent Application Publication

¢l O

SaSNoYaLe N ATepu0ag
pue Apwilg f0) puD
aAdpapmouy pajun

asnoyaze
AI1epuodag

8021
SMNPON
Aang)
SSajuIesg

o

I e

9071

ocm__«\

r 2

wAD

FAira| —/

http://www.patentlens.net/

enabling INNOVATION

http://www.patentlens.net/

US 2008/0071748 A1

Mar. 20, 2008 Sheet 17 of 17

Patent Application Publication

9Ttl

€1 'O

$231A9(J nduj

suoneolddy
2or1I91U] /u el
uonedunuIuo) w2IsAg SuneradQ .
10883301 // of¢l
20¢€1 _/ H
sng -
ys1q INOY WVY
omﬁ!\ w_m_l\ m:m_u\ B
Aourajy

80¢€1 .\

L

Kepdsig

90¢t I\

http://www.patentlens.net/

http://www.patentlens.net/

US 2008/0071748 Al

METHOD AND SYSTEM FOR STORING,
ORGANIZING AND PROCESSING DATA IN A
RELATIONAL DATABASE

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of U.S. Provi-
sional Application No. 60/845,167, filed Sep. 18, 2006, the
entirety of which is hereby incorporated by reference.

TECHNICAL FIELD

[0002] The present disclosure relates generally to rela-
tional database management systems (RDBMS), and more
particularly to a method and system for storing, organizing
and/or processing data in RDBMS.

BACKGROUND

[0003] Databases and database management systems are
being implemented in more and more businesses, organiza-
tions and institutions, and are being used to store and
manage increasingly large amounts of data of increasingly
different types and complexity. As a result, there is a need for
improved database management solutions.

SUMMARY

[0004] A relational database management system
(RDBMS) in which analytical information about data and
relationships within data are utilized in query planning and
execution is described along with methods for using such an
RDBMS. Analytical techniques such as rough set analysis
(RSA) techniques may be applied to this analytical infor-
mation to attempt to minimize the amount of information
required to resolve a query and/or determine the fastest
approach to retrieve the necessary data to answer the query.
In some instances, queries may be planned and executed
based on the analytical information (e.g., statistical infor-
mation) about the database without accessing the underlying
data. Methods of compression and decompression may also
be applied to data stored in such RDBMS. Such methods
may be optimized for the data.

[0005] In some aspects, there is provided a method of
storing data. The data has individual data elements. The
method comprises grouping a plurality of data elements of
a same data type into at least one data unit; gathering
information about the data elements of the at least one data
unit into at least one information unit; and storing the at least
one data unit and the at least one information unit on a
storage device of a computing device. Each of the data units
may have at least one corresponding information unit. A
single information unit may be associated with a single data
unit. The information stored in the single information unit
corresponds to contents of the associated single data unit.
The overall size of the stored information units may not
exceed 1% of the overall size of stored data units.

[0006] In some aspects, a single information unit may be
associated with two or more data units of the same data type.
The information unit may group the data elements of the two
or more data units. The information stored in the information
unit may correspond to relationships between data elements
in the two or more data units.

[0007] Insome aspects, the data elements may be arranged
in a table having columns and rows, where each data unit has
a number of data elements from a single column of the table.

enabling INNOVATION

Mar. 20, 2008

The data units having data elements corresponding to the
same rows of the table may be grouped into data unit groups.
Each data unit group may have an identification number and
the data elements correspond to the same row having the
same position within the data units of the data unit group.
[0008] In some aspects, a method of processing a data
query in a data processing system is provided. The data in
the data processing system includes a plurality of individual
data elements. The data elements are grouped and stored in
at least one data unit. Information about the at least one data
unit is gathered and stored in at least one information unit.
The method comprises receiving the data query to be
executed; using the information in the at least one informa-
tion unit to optimize and execute the query; resolving the
data query; and returning results of the data query for use by
the data processing system.

[0009] In some aspects, the data elements are arranged in
a table having columns and rows with the data units having
a number of data elements from a single column of the table.
The data units having data elements from the same rows of
the table may be grouped into data unit groups, each data
unit group having an identification number and the data
elements correspond to the same row having the same
position within the data units of the data unit group.
[0010] Resolving the data query may include executing an
execution plan. The execution plan may have a sequence of
data processing operations. Execution of each of the data
processing operations within the execution plan includes the
steps of: using the information in the at least one information
unit to identify the data units containing the data elements
that are to be retrieved to complete the operation; retrieving
the data elements in the respective data units needed to
complete the operation; completing the operation; and if the
completed operation is the last operation in resolving the
data query, returning the results of the data query for use by
the data processing system and if the completed operation is
not the last operation in resolving the data query, returning
intermediate results of the operation for use by the remain-
ing operations in the execution plan.

[0011] In some aspects, further information units are
dynamically created to reduce the time it takes to resolve a
data query. The information in the at least one information
unit may be dynamically altered to reduce the time it takes
to resolve a data query. The information in one or more of
the at least one information units may be dynamically
altered based on results of one of the data processing
operations to reduce the time it takes to resolve a data query.
Results of one of the data processing operations may be used
to determine parameters of subsequent data processing
operations to reduce the time it takes to resolve a data query.
[0012] In some aspects, a data processing system for
storing data is provided. The data has individual data ele-
ments. The system comprises a server having a processor for
controlling operation of the server; a storage device coupled
to the processor; and a memory coupled to the processor.
The server is configured to: group a plurality of data
elements of a same data type into at least one data unit;
gather information about the data elements of the at least one
data unit into at least one information unit; and store the at
least one data unit and the at least one information unit on
the storage device. Each of the data units may have at least
one corresponding information unit.

[0013] In some aspects, a data processing system for
processing a data query is provided. The data processing

http://www.patentlens.net/

http://www.patentlens.net/

US 2008/0071748 Al

system has a server having: a processor for controlling
operation of the server; a storage device coupled to the
processor; and a memory coupled to the processor. The
system includes a plurality of individual data elements. The
data elements are grouped and stored in at least one data unit
on the storage device. Information about the at least one data
unit is stored in at least one information unit on the storage
device. The server includes a query module resident in the
memory for execution by the processor. The query module
is configured to: receive the data query to be executed; use
the information in the at least one information unit to
optimize and execute the query; resolve the data query; and
return results of the data query for use by the data processing
system.

[0014] In some aspects, a computer program product hav-
ing a computer readable medium tangibly embodying code
for storing data in a data processing system is provided. The
data has individual data elements. The computer program
product comprises: code for grouping a plurality of data
elements of a same data type into at least one data unit; code
for gathering information about the data elements of the at
least one data unit into at least one information unit; and
code for storing the at least one data unit and the at least one
information unit on the storage device.

[0015] In some aspects, a computer program product hav-
ing a computer readable medium tangibly embodying code
for processing a data query in a data processing system is
provided. The system includes a plurality of individual data
elements. The data elements are grouped and stored in at
least one data unit. Information about the at least one data
unit is stored in at least one information unit. The computer
program product comprises: code for receiving the data
query to be executed; code for using the information in the
at least one information unit to optimize and execute the
query; code for resolving the data query; and code for
returning results of the data query for use by the data
processing system.

BRIEF DESCRIPTION OF THE DRAWINGS

[0016] FIG. 1 is a schematic diagram of a relational
database management system (RDBMS);

[0017] FIG. 2 is a schematic representation of a data pack
consisting of compressed column-data stored in a database;
[0018] FIG. 3 is a flowchart illustrating operations of a
method for generating data packs;

[0019] FIG. 4 is a schematic representation of a column
being encoded during the operations of FIG. 3;

[0020] FIG. 5 is a flowchart illustrating operations of a
method for decoding data packs;

[0021] FIG. 6A is a schematic diagram illustrating an
example of a HIST knowledge node;

[0022] FIG. 6B is a schematic diagram illustrating an
example of a CMAP knowledge node;

[0023] FIG. 6C is a schematic diagram illustrating an
example of a Graph Node knowledge node;

[0024] FIG. 6D is a schematic diagram illustrating an
example of a Foreign Node knowledge node;

[0025] FIG. 7A is a diagrammatic representation of a
method of compression;

[0026] FIG. 7B is a flowchart illustrating operations of a
method for compressing data;

[0027] FIG. 7C is a flowchart illustrating operations of a
method for decompressing data;

enabling INNOVATION

Mar. 20, 2008

[0028] FIG. 8 is a schematic diagram illustrating opera-
tions of a method for compressing data using a PartDict data
filter;

[0029] FIG. 9 is a schematic diagram illustrating opera-
tions of a method for decompressing data that was com-
pressed using the PartDict data filter of FIG. 8;

[0030] FIG. 10 is a schematic representation of data within
the RDBMS of FIG. 1;

[0031] FIG. 11 is a schematic representation of a tiered
data warehouse;

[0032] FIG. 12 is a schematic representation of a tiered
data warehouse system; and

[0033] FIG. 13 is a schematic diagram illustrating a com-
puting device that may be used to implement the methods
disclosed.

[0034] Throughout the Figures, like features are identified
by like reference numerals.

DETAILED DESCRIPTION

[0035] The present disclosure provides a relational data-
base management system (RDBMS) in which analytical
information about data in a database may be used in query
planning and execution. The analytical information may be
determined from the data by mathematical techniques. Basic
analytical information about the data may be used to provide
advanced analytical information (i.e., higher level, more
organized information) about the data and relationships
within the data. Analytical information usually applied by
conventional databases to single data values may be applied
at the level of collections of values stored in data packs as
described below.

[0036] Using basic and advanced information about the
data, techniques such as rough set analysis (RSA) tech-
niques may be used in query planning and execution. RSA
techniques are mathematic techniques based on rough set
theory for providing statistical information about raw data.
RSA techniques apply mathematic analytical techniques to
identify relationships between data and provide approxima-
tion data (e.g., rough sets) that represent these relationships.
RSA techniques may also be used to generate and optimize
the advanced information about the data to further improve
query execution. Rough set theory can provide a theoretical
basis for machine learning by which relationships may be
identified in raw data. Analytical techniques, such as various
RSA techniques, may be applied in the RDBMS.

[0037] The use of RSA techniques in query planning and
execution seeks to improve query response times and extend
query capabilities compared with traditional approaches to
database management systems (DBMS). Using basic and
advanced information about the data, RSA techniques allow
the amount of data that needs to be accessed to resolve a
database query to be minimized by first analyzing the basic
and/or advanced analytical information to determine if this
analytical information may be used, either entirely or in part,
to resolve the query without accessing the underlying data.
The process of accessing data may require the data to be
retrieved from a storage medium, which may be costly in
terms of memory or time. Further, when data needs to be
accessed, the basic and/or advanced analytical information
may assist in determining the optimal approach to do it, as
some data may need to be accessed multiple times while
resolving the given query. Further still, the basic and/or
advanced analytical information about the data may provide
useful information in managing or organizing the database,

http://www.patentlens.net/

http://www.patentlens.net/

US 2008/0071748 Al

and may be used to extend standard functionality of the
relational database management system, such as optimiza-
tion and execution of queries, by allowing “rough queries”
based solely on the basic and/or advanced analytical infor-
mation about the data. These rough queries may be used as
execution steps in the resolution of a data query.

Relational Database Management System

[0038] FIG. 1 is a schematic diagram of a relational
database management system (RDBMS) 200. The example
RDBMS 200 is described with reference to functional
program modules for the purpose of illustration only. When
implemented, one or more of these functional modules may
be combined into a single program module or may include
two or more sub-modules. The RDBMS 200 may interface
with a client application (also referred to as a client) 202
providing a query tool executed on a user terminal (not
shown). The RDBMS 200 may be coupled to a database 201,
which may be implemented using SQL (Structured Query
Language), and may provide an interface, such as an SQL
interface, to query tools for use via the client application
202. The SQL interface may manage the creation and
management of database objects like tables, views and user
permissions to those tables. Although only client application
202 is shown, multiple client applications 202 may be
connected to the RDBMS 200. The client application 202
may provide a user interface (not shown) through which
SQL requests and responses may be sent and received
between the client application 202 and the RDBMS 200. The
RDBMS 200 may include a Query Parser 204, a Query
Representation Optimizer 206, a Query Optimizer 208 and
a Query Execution Module 210.

[0039] The RDBMS 200 may also include functional
program modules such as: connectors, connection pool,
management services and utilities, caches and buffers, and
file system. The functionality of these program modules will
be understood by a person of ordinary skill in the art and so
will only be briefly described. The connectors may provide
various mechanisms/protocols for external tools to connect
to the database. The connection pool may manage multiple
clients connecting and making requests to the database. The
connection pool may manage the concurrency of many
requests competing for resources. The management services
and utilities are supporting tools that may be used with the
data to manage administration, settings, users, etc. The
caches and buffers are lower level services that may be
provided to all the system components which manage data
in memory (e.g., Random Access Memory (RAM)) for
query responses and optimizations among other functions.
The file system may manage the storage device.

[0040] The database 201 may include one or more data
packs (DP) 221 (see FIG. 4). In some aspects, the database
201 may be a column-oriented database 201, and the data
packs 221 may each represent column data from a base
table. The data packs 221 may include compressed data
representing the records or entries in the respective column.
The database 201 may be stored or partitioned on one or
more data storage devices (not shown) such as a hard disk
drive (HDD) or other suitable storage medium, which may
be a permanent (i.e., non-volatile) storage medium. In some
aspects, the data packs 221 may contain data concerning up
to 65,536 consecutive records or records occupying up to 64
k of storage space, of which some values may be null.
Depending on the size of a column, it may be stored in more

enabling INNOVATION

Mar. 20, 2008

than one data pack (e.g., if the column has more than 65,536
records or requires more than 64 k of storage space). The
data packs 221 may contain more or less records than
discussed here, depending on the application.

[0041] The data packs 221 may be compressed. In some
aspects, data packs 221 that are frequently accessed or
frequently decompressed may also be stored in memory in
compressed or uncompressed form in addition to being
stored in a storage medium, which may decrease access time
or costs. If the data pack 221 is stored in uncompressed
form, memory usage may be decreased by not having to
decompress the data pack 221 to access its data elements.
The frequency at which the data packs 221 in memory are
accessed may be monitored, and if the access frequency of
a certain data pack 221 falls below a certain threshold, that
data pack 221 may be removed from memory. Similarly, the
frequency at which data packs 221 not stored in memory are
accessed may be monitored, and if the access frequency of
a certain data pack 221 is above a certain threshold, that data
pack 221 may be copied and stored in memory in either
compressed or uncompressed form. In other words, fre-
quently accessed data packs 221 may be cached in memory
in order to reduce access delays.

[0042] Information about data elements in a data pack
221, such as basic statistical or analytical information, may
be stored in an information unit or statistical data pack
referred to as a data pack node (DPN) 222 (see FIG. 4)
associated with each data pack 221 in the database 201. In
some aspects, there may be one DPN 222 for each data pack
221. The data pack 221 and DPN 222 may be stored in the
database 201 in separate files. Some collections of the data
packs 221 may be stored in the same files. Each DPN 222
may contain basic information (e.g., statistics) about its
respective data pack 221. The particular information main-
tained in the DPN 222 for each data pack 221 may depend
on the particular data type of the respective data pack 221.
Typically, the size of each DPN 222 may be small and so the
DPN 222 may be not compressed. However, if the infor-
mation contained in the DPN 222 becomes more complex or
large, the DPN 222 may be compressed.

[0043] Generally, column data types may be at least one
of: a string, a numeric value, a floating point value, or a
binary value. A compression algorithm may be selected for
each of these four primary data types. In some aspects,
within each of these four primary data types there may be
sub-types (e.g., large string, short string, date, or other) for
which different compression algorithms may be selected. In
some aspects, all numeric values, floating point values, and
binary values may be stored as unsigned integers for the
purpose of compression. For example, a negative decimal
number may be converted to an unsigned integer, with
certain indicators to mark that it is a negative decimal
number. This can be reconstructed to recover the original
number. By using only unsigned integers for storage, imple-
mentation of compression may be simplified by avoiding the
need for different filters specific to a large number of data
types. Of course, certain data filters, for example PartDict,
may be able to process all data types. Data filters will be
discussed in greater detail further below.

[0044] In accordance with an embodiment, at least the
following SQL-compatible data types may be implemented
(the particular format of each data type may be varied):
TINYINT, BOOL, BOOLEAN, SMALLINT, INT, FLOAT,
REAL, DOUBLE, DEC, DATE, DATETIME, TIMES-

http://www.patentlens.net/

http://www.patentlens.net/

US 2008/0071748 Al

TAMP, TIME, YEAR, CHAR, VARCHAR, BINARY, VAR-
BINARY, TINYTEXT, and TEXT.

[0045] In this example, the DPN 222 for data packs 221
may include: the number of non-null values in the respective
data pack 221, the minimum and maximum values in the
respective data pack 221, and the sum of values (this may be
applicable to numerical data types only) in the respective
data pack 221. In the case of non-numerical data types, the
lexicographic minimum and maximum or the largest com-
mon prefix (e.g., the longest sub-string that is common to all
strings) for a data pack 221 may be stored. If all non-null
values in the data pack 221 are the same, the DPN 222 may
store only the statistical information and positions of nulls.
Additional or different information may be included in the
DPN 222 in other aspects. Further, other information about
the respective data pack 221 may be derived from the
information in the DPN 222. For example, the average value
may be derived directly from the number of non-null values
and the sum of values which are both stored in the DPN 222
of the example.

[0046] The DPN 222 may be used in query planning and
execution, and may allow minimization of the need to access
the data stored in the respective data pack 221 during query
execution, as will be described in more detail below.
[0047] For a data table with more than one column, DPNs
with the same ordinal numbers contain information about
the same rows. For example, the values of the 100,000” row
are stored in the second data pack for each of the columns
because the first data packs may store the values for rows
with numbers between 1 and 65,536, and the second data
packs for each of the columns store the values for rows with
numbers between 65,537 and 131,072. It is convenient to
use the term “packrow” to indicate the collection of data
packs corresponding to different columns but storing the
values of the same rows. The packrows may also be referred
to as data pack groups or data unit groups. For example, the
first packrow consists of data packs storing the values of
rows with numbers between 1 and 65,536, the second
packrow corresponds to the rows with numbers between
65,537 and 131,072, etc. A packrow may also be referred to
as to its ordinal number plus references to particular data
packs for particular columns. A row with a given ordinal
number (e.g., 100,000) may be trackable using the ordinal
number of the packrow that it belongs to, for example
number 2 for the 100,000” row, and the local ordinal number
of each of values of that row in each of the corresponding
data packs, which for this example is 34,464.

[0048] Knowledge nodes (KNs) or knowledge node
objects 224 may be also stored in the database 201 on the
same or different storage device (e.g., HDD) as the data
packs 221 and the DPNs 222. The KNs 224 are another type
of information unit or statistical data pack, and may be
directly associated with specific data packs 221. The KNs
224 may be associated with one or more data packs 221, one
or more columns, one or more tables, or a combination
thereof. KNs 224 may include information, such as
advanced analytical information, about the data elements
stored in one or more data packs 221, one or more columns,
one or more tables, or a combination thereof. The KNs 224
are optional in that they provide more detailed or advanced
information about the data elements in the data packs 221
and relationship between the data elements. There are sev-
eral types of KN's 224 that may be generated and stored, and
new KNs 224 may be generated and added to the RDBMS

enabling INNOVATION

Mar. 20, 2008

200 without impact or without significant impact to the basic
functionality of the RDBMS 200. The KNs 224 may be
dynamic and may change over time. KNs 224 provide
information about data elements in data packs 221 that may
extend beyond that provided by the DPN 222, such as
information about relationships between data elements in
multiple data packs 221, information about relationships
between data elements in different columns in a base table
and/or relationships between data elements in columns in
different base tables. Example KNs 224 are described below.
Typically, the size of each KN 224 may be small and so KNs
224 may be not compressed, however if the information
contained in the KNs 224 becomes more complex or large
the KNs 224 may be compressed. Together, the DPNs 222
and KNs 224 for the database 201 form a knowledge grid
(KG).

[0049] The database 201 may also have indices based on
the data packs 221 analogous to database indices based on
records. Most standard database indices may be adapted for
the RDBMS 200 to be based on the data packs 221 and
packrows rather than records.

[0050] The RDBMS 200 may further include a Knowl-
edge Grid (KG) Manager 220 and a Knowledge Grid (KG)
Optimizer 240. The Knowledge Grid Manager 220 is a
functional program module that may manage the DPNs 222
and KNs 224. The Knowledge Grid Manager 220 works
with the Query Optimizer 208 and Knowledge Grid Opti-
mizer 240. The Knowledge Grid Manager 220 may gener-
ate, modify and remove KNs 224 based on instructions from
the Knowledge Grid Optimizer 240. The Knowledge Grid
Manager 220 may also be responsible for informing the
Query Optimizer 208 about the available DPNs 222 and
KNs 224 and may load them into memory from storage (e.g.,
HDD) as necessary. When loaded into memory, the Query
Optimizer 208 may use information from the DPNs 222 and
KNs 224 to determine the optimum query execution plan.
Once loaded into memory the DPNs 222 and KNs 224 may
also be used in the execution of the query execution plan as
will be explained in more detail below.

[0051] The Knowledge Grid Optimizer 240 is a functional
program module that may be used to determine an optimum
set of KNs 224 based on query statistics 244 (which may be
obtained from the Query Parser 204) and data pack usage
statistics 242 obtained from the Knowledge Grid Manager
220. The query statistics 244 may allow the Knowledge Grid
Optimizer 240 to identify data ranges and types of informa-
tion about the data being queried. The query statistics 244
may be applied by the Knowledge Grid Optimizer 240 to
determine which KNs 224 are the most useful for query
execution. For example, the query statistics 244 may main-
tain information on how frequently particular pairs of tables
are joined, which may influence whether the corresponding
pack-to-pack KN 224 should be stored in the knowledge
grid.

[0052] Data pack usage statistics 242 may store informa-
tion about the frequency and/or kind of usage (e.g., relevant,
irrelevant, partially relevant) of data packs 221. Data pack
usage statistics 242 may influence compression/speed ratios
for particular data packs 221 and which data packs 221 are
loaded directly into memory. Data pack usage statistics 242
may also be used to vary the content of the DPNs 222 for
particular data packs 221. Data pack usage statistics 242
may be used to identify the respective data packs 221 of the
data being queried.

http://www.patentlens.net/

http://www.patentlens.net/

US 2008/0071748 Al

[0053] Using the query statistics 244 and the data pack
usage statistics 242, the Knowledge Grid Optimizer 240
may update the optimal set of KNs 224. If KNs 224 do not
exist over a desired data range, the Knowledge Grid Opti-
mizer 240 may determine that creation of one or more KNs
224 would improve query execution. In this case, the
Knowledge Grid Optimizer 240 may instruct the Knowledge
Grid Manager 220 to create one or more KNs 224 of a given
type (e.g., create a histogram for a given data pack 221). If
KNs 224 exist over a desired data range (e.g., for a given
data pack 221) but, for example, the KN's 224 cannot be used
to answer the most frequent queries over this range, the
existing KNs 224 may be modified (e.g., histogram ranges
expanded) or new KNs 224 may be created (e.g., create a
Pack-Pack Join object) in order to provide sufficient statis-
tics to satisfy such queries. In this case, the Knowledge Grid
Optimizer 240 may instruct the Knowledge Grid Manager
220 to modify or create the relevant KNs 224. If KNs 224
exist, but the relevant data is infrequently or never queried,
and hence the relevant KN 224 is infrequently or never
queried, these KNs 224 may be deleted. In this case, the
Knowledge Grid Optimizer 240 may instruct the Knowledge
Grid Manager 220 to delete the relevant KNs 224. If such
data becomes accessed or queried more frequently in the
future, this may be detected by the Knowledge Grid Opti-
mizer 240, which may instruct the Knowledge Grid Man-
ager 220 to (re)create relevant KNs 224 if doing so will
improve query performance.

[0054] The Knowledge Grid Optimizer 240 provides an
improved collection of KNs 224, that is, KNs that cooperate
with each other in an improved way in resolving queries. For
example, two particular KNs may be far more valuable than
the rest of KNs. However, it may only be necessary to retain
and store one of those two KNs because they usually aid in
resolving the same queries with the same data packs. In such
a case, it is possible to store only one of those two best KNs
since they are somewhat redundant. Instead of storing the
second KN, it may be beneficial to generate another more
complementary KN that may be helpful with other queries
or data packs.

[0055] Given the above example of how the task of
optimizing a collection of KNs may differ from the task of
choosing KN that appear to be the best KN, if these two
tasks are viewed separately, some optimization principles
may be generated to be followed by Knowledge Grid
Optimizer 240. One objective of the Knowledge Grid Opti-
mizer 240 is to maintain a collection of KNs 224 that are
most useful in resolving queries. KNs that are most useful in
resolving queries are those KNs that protect or prevent the
most data units from being accessed. Further, the Knowl-
edge Grid Optimizer 240 monitors the KNs 224 that are
contributing least while query optimization and execution
occurs. The Knowledge Grid Optimizer 240 searches for and
generates new possible KNs to be stored instead of those
least contributing KNs. Some considerations for evaluating
the contribution of KNs include overall disk space required
for storing all of the KNs 224 and total memory required to
store the KNs 224 in memory.

[0056] The Knowledge Grid Optimizer 240 may use one
or more heuristic algorithms, including greedy, randomized,
evolutionary and/or other Al-based algorithms, to determine
the optimal set of KNs 224 to satisfy the most queries with
the least amount of access to the data in the data packs 221,
thereby minimizing the need to decompress the data packs

enabling INNOVATION

Mar. 20, 2008

221 and load the raw data into memory. Some suitable
heuristic algorithms can be found in “How to Solve It:
Modem Heuristics” by Michalewicz and Fogel; and in
“Introduction to Algorithms” by Cormen, Leiserson, Rivest,
and Stein. In one example, the Knowledge Grid Optimizer
240 may identify the most significant relationships within
the data and then may determine an optimal set of KNs 224
to be maintained by the RDBMS 200. The Knowledge Grid
Optimizer 240 may then instruct the Knowledge Grid Man-
ager 220 to generate, modify and/or remove KNs 224 in
accordance with the determined optimal set. Accordingly,
the KNs 224 may be dynamic and change over time in
accordance with the query statistics 244 and the data pack
usage statistics 242. In addition, because the KNs 224 may
contain analytical information about data rather than actual
data, the KNs 224 may be deleted or lost without compro-
mising data integrity.

[0057] The Query Parser 204 may receive SQL queries,
sometimes referred to as requests or SQL statements, from
the client application 202. The Query Parser 204 parses or
separates the SQL query received from the client application
202 and converts it into an internal representation usable by
the RDBMS 200. The Query Parser 204 may forward this
internal representation to the Query Representation Opti-
mizer 206.

[0058] The Query Representation Optimizer 206 may per-
form a syntactical optimization of the query. The Query
Representation Optimizer 206 replaces any references to
views with references to the underlying base tables and
reformats the query to attempt to make it easier to execute
based on the structure of the query request. The Query
Representation Optimizer 206 may forward this optimized
representation to the Query Optimizer 208.

[0059] The Query Optimizer 208 may optimize the query
for execution using analytical information from the DPNs
222 and KNs 224 relating to the underlying data (e.g.,
column, table, or view described in the original SQL query)
provided via the Knowledge Grid Manager 220, and from
intermediate query results obtained from the Query Execu-
tion Module 210 as will be described in more detail below.
The Query Optimizer 208 may prepare the query for execu-
tion by preparing a query execution plan. If intermediate
query results are obtained from the Query Execution Module
210, the Query Optimizer 208 may modify the initial query
execution plan based on these intermediate results. The
Query Optimizer 208 may forward the initial and any
modified query execution plans to the Query Execution
Module 210 for execution.

[0060] The Query Execution Module 210 may execute the
initial and any modified query execution plans provided by
the Query Optimizer 208. The Query Execution Module 210
may also be coupled to the Knowledge Grid Manager 220 so
as to provide access to the analytical information of the
DPNs 222 and KNs 224 for use in answering the query. The
Query Execution Module 210 may, if the query cannot be
resolved solely from the basic and/or advanced analytical
information in the DPNs 222 and/or KNs 224 respectively,
use retrieved data from storage (e.g., HDD) by decompress-
ing the relevant data packs 221 in the database 201 using a
Decompression Module 246. A file system (not shown) may
be responsible for storing and retrieving data from data
packs 221 in storage and compressing/decompressing the
data packs 221 as required.

http://www.patentlens.net/

http://www.patentlens.net/

US 2008/0071748 Al

[0061] The RDBMS 200 may further include import mod-
ule 248 and export module 250. The import module 248 may
be used to encode raw data from base tables obtained from
an external database or data source 203 into data packs 221.
The export module 250 may be used to decode data packs
221 into underlying base tables for exporting to the data
source 203. As part of the encoding/decoding operation, the
data in the data packs 221 may be compressed/decom-
pressed. Compression may be performed by the compres-
sion module 252 in the import module 248, and decompres-
sion may be performed by the decompression module 254 in
the export module 250. The compression and decompression
may use the filter cascade described below. The compression
process may use a compression algorithm selected to opti-
mize the compression ratio of a column, and may be selected
according to the data type of the respective column. Possible
compression algorithms encode the data and may use com-
mon coding methods known in the art including: arithmetic
coding, range coding, Shannon-Fano-Elias coding, Shannon
coding, Huffman coding, Rice coding, Golomb coding,
Tunstall coding, and prediction by partial matching (PPM).
Other codes or compression algorithms may be suitable.
DPN information about the column may be used to vary
parameters (for example, to apply or not apply various
parameters) of the selected compression algorithm. A
complementary decompression algorithm may be used when
the data packs 221 are decoded for export or query resolu-
tion when data about individual data packs is required. The
importing operation may optionally include creation of KNs
224, using the KN Creation Module 256 in the import
module 248. Compression and decompression of the data
will be discussed in greater detail below.

[0062] The database content and metadata may be stored
in several types of files: (1) column description files; (2) data
pack description files; (3) data files; and (4) knowledge node
description files.

[0063] The column description files contain a description
of the column which may include: its data type, DPN
information, and data pack localization. In some aspects,
there are data pack description files in addition to the column
description files, in which case the column description files
may contain information on the data type and basic statistics
of the column (e.g., information as to whether each record
has a unique value, dictionary of values if a column has
small number of distinct values, or others), and the data pack
description files may contain DPN information and data
pack localization information. The data pack localization
information associates each column with a respective data
pack identifier (ID) such as a file name or number and file
offset in cases where each data file contains more than one
data pack. These files may additionally contain session
information which may enable identification of the sessions
in which the given data pack was created or modified. The
column description file may be a relatively small file,
typically several kB in the present embodiment, which is
loaded into memory when the respective column is used for
the first time. The column description file is used to locate
and decode data packs 221 by identifying the associated data
pack 221 and data type so as to identify the relevant
decompression algorithm. In some situations, the metadata
which may include the column description files from
memory may be sufficient to determine the content of the
data pack (e.g. nulls only, all values identical) in which cases
the data file may be empty.

enabling INNOVATION

Mar. 20, 2008

[0064] The data files contain the compressed column data.
The data files may be stored with the column description file,
although they may be stored in a different location (e.g.,
different storage device, etc.). In some aspects, the data files
may be limited to 1.5 GB in size, or some other suitable size
depending on the application, to improve read times. Each
data file may contain data for two or more data packs 221,
where each data pack 221 in the data file occupies a
continuous space. The number of data packs 221 that may be
stored in one file varies depending on the size of each data
pack 221, which may be influenced by data type, number of
nulls, and compression ratio. When reading data from a data
pack 221, the file system may only need to decompress the
part of the data file associated with the relevant data pack
221. Advantageously, storing more than one data pack 221
in one data file may allow faster read times (e.g., times for
decoding and loading of data pack data into memory for
access during query execution) than if each data pack 221
were stored separately. Additionally, storing larger collec-
tions of data packs 221 together in files may improve the
access speed. If each data pack 221 were stored in a separate
file, the access speed may be reduced.

[0065] The knowledge node description files store infor-
mation about the KNs 224. Fach KN description file
describes a separate KN 224, allowing individual KNs 224
to be created, modified, or removed by the Knowledge Grid
Manager 220 without affecting other objects, such as other
KNs 224. This may improve the ability to manage (e.g., by
creation or deletion of KNs 224) the KNs 224 of the
database 201. The KN description files may be stored on the
same or different storage device (e.g., HDD) as the column
description files and data files. The KN description files are
loaded into memory on the first use of the KNs 224, however
the Knowledge Grid Manager 220 may load and remove
KNs 224 from memory in accordance with usage of such
KNs 224. The KN description files are not necessary for data
decoding, and may therefore be lost or restored at any time.
[0066] All of the data files may be subject to memory
management. Once the column metadata (e.g., column
description files), data pack (e.g., data file) 221 or KN (e.g.,
KN description file) 224 is loaded into memory, it may be
kept in memory as long as it is being used, and may be kept
by the memory manager for future use. When the available
memory becomes low, the less used objects may be removed
from memory, as managed by the Knowledge Grid Manager
220.

Query Example

[0067] FIG. 2 illustrates an example query using data
packs and analytical information in the DPNs 222. FIG. 2
represents data packs including compressed column-data
stored in the database 201. The following example query is
to be solved using the database 201:

SELECT COUNT(*) FROM . . . WHERE A>5;

[0068] For the purposes of this example, the data packs in
the database 201 can be separated into three categories:
BLACK data packs 260 are not relevant to the query; GREY
data packs 262 are partially relevant to the query, so they
need to be accessed to answer the query because some of the
elements of the data packs 262 may be relevant and some
other elements may be irrelevant; and WHITE data packs
264 are relevant to the query and do not need to be accessed

http://www.patentlens.net/

http://www.patentlens.net/

US 2008/0071748 Al

to answer the query because the answer can be determined
directly from the respective DPN 222.

[0069] The BLACK data packs 260 each have a maximum
value of less than 5 on A (e.g., some may have a maximum
of 4, others 3, and yet others 2 or 1). These data packs are
not relevant to answering the query because all of the data
in these data packs 260 falls outside the query, because the
maximum value of A of all records stored in the data packs
260 is 4 which is less than the query restriction of A>5. The
BLACK data packs 260 are said to be disjoint with the
query.

[0070] The WHITE data packs 264 each have a minimum
value greater than 5 on A (e.g., some may have a maximum
of 6, whereas others may be 7 or 10, etc.) on A. These data
packs 264 are relevant to answering the query because the
value of A for all records in these data packs 264 is greater
than or equal to 6 which is greater than the query restriction
of A>5. If the information in the DPNs 222 about the
WHITE data packs 264 indicates the number of records with
non-null values on A, then this information can be summed
to partially resolve the query for the WHITE data packs 264.
The GREY data packs 262 each have a minimum value of
3 and a maximum value of 7 on A. These data packs 262 are
also relevant to answering the query because some of the
records in these data packs 262 have a value which is greater
than 5 on A, while some records in these data packs 262 have
a value of less than 5 on A. Thus, only the WHITE and
GREY data packs 264, 262 are relevant to answering the
query. The BLACK data packs 260 are not needed.

[0071] In the above example, information to answer the
COUNT(*) query can be obtained from information regard-
ing how many records from particular data packs satisfy the
filter A>5. Thus, for BLACK data packs 260 the answer is
automatically known to be zero. For WHITE data packs 264,
we know that all records with non-null values on A inside
should be counted. The number of non-null values is stored
in the DPN 222 for a numeric data type so this number can
be taken and summed for all of the WHITE data packs 264.
Only for the GREY data packs 262 is the number of how
many of the non-null values that are actually greater than 5
not known using information from the DPNs 222, and hence
the GREY data packs 262 need to be decompressed to get
detailed information about every single value in the GREY
data packs 262. The above example is provided for the
purpose of illustration only.

Data Pack Generation

[0072] FIGS. 3 and 4 illustrate operations 300 of a method
for generating data packs in accordance with an embodi-
ment. The operations 300 illustrate the generation of a single
data pack 221. If more than one data pack 221 is needed, for
example when a base table is being imported into the
RDBMS 200, then the operations 300 must be repeated until
the entire base table has been encoded into data packs 221.
Although the particular compression algorithm may vary
between data packs 221, the same steps 302-320 will be
performed for each column of the base table irrespective of
the applied compression algorithm. FIG. 4 shows a partial
column 402, its corresponding null mask 404, and a reduced
data set 406 generated by removing the null positions
indicated in the null mask 404 from the partial column 402.
[0073] In the first step 302, a column data from a base
table to be encoded is selected, for example, when raw data
from a base table is being imported into the RDBMS 200.

enabling INNOVATION

Mar. 20, 2008

Next, in step 304 column data is obtained. In some aspects,
each data pack 221 may hold records for up to 64 k (65,536)
of storage space. Alternatively, each data pack 221 may hold
65,536 records. The data pack 221 may hold more or less
records than described here, depending on the application. If
the column contains less then 64 k of records, the column
may be padded with null values to create a total of 64 k
column, or the column may be left with less than 64 k of
records, as an incomplete column. If the column contains
more than 64 k of records, two or more data packs may need
to be generated in order to compress the entire column. In
other aspects, the data packs 221 may be able to handle more
than 64 k of records. Similar operations may be carried out
where each data pack 221 is designed to hold 65,536
records. While a value of 64 k is used in this example for the
size of each column, columns of any size may be used in
order to meet the requirements of a particular application.

[0074] Next, in step 306 basic analytical information for
the column data to be stored in the respective DPN 222 is
calculated. Optionally, prior to calculating the DPN infor-
mation the column data may be analyzed for outliers. If any
outliers are detected, they form part of the DPN information
stored in the DPNs 222. In addition, if any outliers are
detected they may be not considered in determination of the
other DPN information (e.g. null, non-null, maximum and
minimum where applicable, and sum where applicable).
Outliers are values which do not match the general pattern
or trend in a given column. Outliers may be, for example,
infrequently occurring symbolic values or extreme values.
In the example of FIG. 4, an outlier is the value 5000 which
is an extreme value compared to the other values in the
column set (i.e., 6, 7 and 8). Outliers may be detected using
heuristic methods including methods commonly known in
the art, which may be similar to those used in the Knowledge
Grid Optimizer 240 described above (e.g., greedy, random-
ized, Al-based, evolutionary etc.). If detected, the outliers
are stored in the DPN 222 and an outlier mask 408 which
tracks the positions of outliers to non-null values is stored in
the data pack 221.

[0075] Next, in step 308 a suitable compression algorithm
may be selected based on the data type of the column. In
some aspects, for each data type implemented in the
RDBMS 200 a compression algorithm is pre-selected. Next,
in step 310 a null (bit) map or null mask 404 (FIG. 4) is
generated. Next, in step 312 the null mask is compressed
using a compression algorithm suitable for binary sequences
since the null mask 404 is binary regardless of data type of
the reference column.

[0076] Next, in step 314 the null mask 404 is used to
remove null values from the column to generate a reduced
data set 406 consisting of only non-null values. The null
mask 404 provides a map of the null value positions and
non-null value positions so that null value positions may be
removed from the column. As will be described in more
detail below, the null mask 404 is stored in the data pack 221
for subsequent use in decompression.

[0077] Next, in step 316 the DPN information is used to
determine parameters of the selected compression algorithm
based on value patterns identified in the reduced data set
406. The Knowledge Grid Manager 220 also provides input
regarding whether the data in a given data pack 221 may be
more highly compressed, for example because it is not used
frequently, which may permit a high compression ratio to be
utilized at the expense of decompression speed, or when

http://www.patentlens.net/

http://www.patentlens.net/

US 2008/0071748 Al

decompression speed should be favoured at the expense of
compression ratio because the data in a data pack 221 is used
frequently. The DPN information may be used to tune the
parameters and optimize the compression ratio within every
single data pack 221 based on intrinsic patterns in the
reduced data set 406. Next, in step 318, the reduced data set
406 column data is compressed using the selected compres-
sion algorithm with the compression parameters determined
in step 316, thus creating a DP 221. Next, in step 320
compressed (non-null) column data, the compressed null
mask 410, outlier mask 408 (if any), compression param-
eters, and any intermediate results of the compression algo-
rithm (if any) are stored together in the data pack 221, and
a DPN 222 is stored in non-volatile memory (e.g., HDD).

[0078] The steps 302 to 320 are then repeated for the next
column, or next portion of the column, until all data in the
base table to be encoded and stored has been processed via
the operations 300.

[0079] FIG. 5 illustrates operations 500 of a method for
decoding data packs 221 in accordance with an embodiment.
Decoding operations 500 may occur, for example, during
execution of a database query in which access to data in the
data packs 221 is needed or during export operations in
which raw data from the RDBMS 200 is exported to the
external database/data source 203. In the first step 502, an
appropriate decompression algorithm is selected for the data
pack 221 to be decoded based on its data type as determined
from the column description file associated with the data
pack 221 and maintained by the RDBMS 200. Compression
parameters and any intermediate results of the compression
algorithm (if any) which are stored in the data pack 221 are
used by decompression algorithm to decompress the data
pack 221.

[0080] Next, in step 504 the compressed data in the data
pack 221 is decompressed to produce a reduced data set 406
(FIG. 4). Next, in step 506 the null information stored in the
associated DPN 222 (i.e., the null mask 404) is applied to the
reduced data set in order to produce the original column
data.

[0081] Although the above description refers to compres-
sion and decompression involving filtering of the outliers
and null values, other filtering methods are possible, and
may be selected depending on the data. These other methods
will be discussed in greater detail.

Multi-Column Encoding

[0082] In addition to encoding a single column, data packs
221 may be encoded based on functional dependencies
between columns within a base table or across base tables.
To accommodate multi-column compression, descriptions
of these functional dependencies may be stored instead of
the actual data for each column. For example, if it is
determined that whenever column A has value x, column B
has value y, then the value of y does not need to be explicitly
stored. The value x in column A may be encoded into data
packs in accordance as described above along with a
description of the functional dependency between columns
A and B (i.e. the relation x=y). This relation may occur
within the context of a single base table or between columns
in different base tables.

[0083] At the knowledge node level, if a multi-column
dependency is known, it can be used to minimize the number
of data packs 221 to be decompressed. For example, if the
values of column A are always greater than those of column

enabling INNOVATION

Mar. 20, 2008

B, during the execution of a query with Filter A=5, then
internally the additional Filter B<5 may be generated by the
Query Optimizer 208 to be used against the DPN informa-
tion for the data packs 221 for the column B.

[0084] Methods that may be common in the art (e.g.,
neural networks, fuzzy logic, rough set reducts, statistical
regression, etc.) may be used to identify functional depen-
dencies between data. Alternatively, functional dependen-
cies may be input from existing database indices when data
is imported into the database 201. Optimization criteria for
identifying functional dependencies may also be modified to
search for inexact functional dependencies, such as where
there are exceptions to the relationship between the data or
a trend/pattern in the data (e.g., outliers as described above).
In the case of inexact functional dependencies, the descrip-
tion of the relationship and any exceptions or special cases
may be stored in the data pack 221 along with the data of at
least a reference column in accordance with the operations
300 described above. For example, if x=y for columns A and
B respectively, except for 2 records, the exceptional records
(e.g., outliers) may be stored along with the relation x=y in
the respective data pack 221. Such functional dependencies
may be smaller in size (e.g., require less memory) than the
underlying data, and may be stored in KNs 224. Thus, KNs
224 may be created before data is grouped into data packs
221.

[0085] Thus, a mathematical dependency model may be
generated based on one or more functional dependencies
describing an inexact functional relationship between data in
columns A and B that allows, with the input of values of
some subset of data in column A, the output of approxima-
tions of the actual values of the corresponding subset of data
in column B. This dependency model may then be modified
to optimize the compression ratio of data of column A to be
compressed during encoding operations using the particular
compression algorithm applied for a particular data type,
provided that the resulting approximation of the actual data
of column B is within the specified tolerance for the given
application. The above examples are for illustration pur-
poses only.

Knowledge Nodes (KNs)

[0086] Some KNs 224 will now be described. Other KNs
224 are also possible. The KNs 224 and their examples
described below are provided for the purpose of illustration
only. In general, KNs 224 can provide statistical and rela-
tional data between columns in the database 201 or among
data packs 221 in a single column.

Value-Pack Histogram (HIST)

[0087] The scope of the HIST object or HIST knowledge
node may be a single numerical column. The HIST object
contains binary information about the existence of a given
value, or any value from a given interval, in the respective
data pack 221. The HIST object is used, for example, to
refine condition checking (e.g., exclusion of a data pack 221
when it is known that a specific value is not present within
that data pack 221) and joining (e.g., exclusion of pairs of
data packs 221 when their histograms are disjoint).

[0088] The HIST object stores binary information about
whether the data pack 221 has any data elements with values
in a given interval. The default number of intervals may be
1024, excluding minimum and maximum values, or it may

http://www.patentlens.net/

http://www.patentlens.net/

US 2008/0071748 Al

be some other number. The intervals may be fixed-sized
intervals, depending on minimum and maximum values in a
pack. Alternately, the intervals may be of variable size, such
as with smaller intervals where the values have a higher
distribution and larger intervals where the distribution is
lower, for example where the values have a bi-modal dis-
tribution. The interval sizes may also be variable depending
on what range of values have a higher frequency of queries.
If the difference between the minimum and maximum values
is less than the default or selected number of intervals, and
the column is fixed-size (e.g., integer or decimal), then exact
data values may be used as the intervals.

[0089] The HIST object may implement a function called
IsValue (v1, v2) where v1 and v2 are two numerical values
defining an interval. The result of the function may be one
of three values: RS_NONE if none of the entries in a data
pack have a value within the interval defined by v1 and v2;
RS_SOME if some of the entries in a data pack have a value
within the interval defined by v1 and v2; and RS_ALL if all
of the entries in a data pack have a value within the interval
defined by v1 and v2.

[0090] One example of this knowledge node is illustrated
in FIG. 6A. In this example, data elements 602 have a
minimum value of 1 and a maximum value of 9. Since the
difference between the minimum and maximum values is
less than the default resolution of 1024, the exact values are
stored. The HIST object 604 uses binary values to indicate
the presence of certain values (i.e., 1, 2, 3, 5, 6 and 9) with
a 1 bit. In this example, IsValue(l, 4) would return
RS_SOME, IsValue(7, 8) would return RS_NONE, and
IsValue(1, 9) would return RS_ALL.

Pack-Pack Join (JPP)

[0091] The scope of the JPP object may be any two
columns from different base tables. The JPP object contains
binary information about whether a given pair of data packs
221 containing column data from different base tables has
any common value, except nulls. The JPP object may be
used, for example, as an additional criterion while joining to
exclude pairs of data packs 221 which are not joinable.

[0092] The JPP object may implement a function called
GetValue (p1, p2) where p1 and p2 refer to two data packs
221. The result of the function may be a Boolean: True
where data packs pl and p2 may have non-empty intersec-
tion, and False where data packs p1 and p2 have no common
values.

Character Map (CMAP)

[0093] The scope of the CMAP may be a single text
column. The CMAP object is a binary map indicating
existence of any character at any position. For example, for
every position n (which may be limited to up to 64 charac-
ters) a binary string of 256 bits (32 bytes) is prepared. The
size of the binary string may be different, depending on the
application. A value ‘1’ on character i means that there is at
least one record in the data pack 221 for which there exists
character i on position n. Characters at positions starting
from 65 may be ignored, although the number of positions
considered may be greater or smaller, or there may be no
limit. The CM AP object may be larger than the HIST object
for numerical values, but may be used for many optimiza-

enabling INNOVATION

Mar. 20, 2008

tions, serving as statistics for sorter definitions and provid-
ing quick answers for some queries with ‘LIKE’ and other
text predicates.

[0094] The CMAP object may implement a function
called IsValue (v1, v2) where v1 and v2 are two string values
defining an interval. The result of the function may be one
of three values: RS_NONE if none of the entries in a data
pack have a value within the interval defined by v1 and v2;
RS_SOME if some of the entries in a data pack 221 have a
value within the interval defined by v1 and v2; and RS_ALL
if all of the entries in a data pack 221 have a value within the
interval defined by v1 and v2.

[0095] The CMAP object may also implement a function
called IsLike (string) where string is a string instance that
CMAP looks for in the column. The result of the function
may be one of three values: RS_NONE if none of the entries
in a data pack 221 matches the pattern; RS_SOME if some
of the entries in a data pack 221 match the pattern; and
RS_ALL if all of the entries in a data pack 221 match the
pattern.

[0096] The CMAP object may also implement functions
called GetMin (pack) and GetMax (pack) where pack is a
data pack 221 in the database 201. The result of these
functions may be a string composed of the minimum or
maximum characters of the histogram at every position in
the data pack 221 for the GetMin (pack) and GetMax (pack)
functions respectively.

[0097] One example of this knowledge node is illustrated
in FIG. 6B, where data elements 606 result in CMAP object
608. In this example, CMAP object 608 may be case-
insensitive, meaning that CM AP object 608 will indicate the
presence of a certain character with a 1 bit regardless of
whether it is uppercase or lowercase. Hence, the element
“Banana” results in a 1 bit indicator for “B” at position 1 and
for “A” at positions 2 and 4. In other implementations,
CMAP object 608 may be case sensitive, may include
special symbols, and/or may include numerical data. While
the CMAP object 606 is only shown with letters A-I and
positions 1-4, any combination of alphanumeric characters,
typically all letters of the alphabet, may be included, and any
number of character positions may be included.

Graph Node

[0098] The scope of a Graph Node may be two or more
columns within a single table. Graph Node knowledge nodes
may represent information about dependencies between the
data elements of the columns. Graph Nodes may have the
structure of a graph having multiple nodes connected by
paths, each path being labelled by a query-like condition.
Thus, as the graph is traversed along the paths, the query-
like condition of each path is added, such that a certain node
in the graph contains information that satisfies all the
conditions in the paths leading up to that node.

[0099] While the Graph Node associated with one column
may contain information on the data elements of that one
column in the table, the paths may be labelled with condi-
tions related to the other columns in the table. The Graph
Node may contain a base node that provides information on
the associated column without any additional condition.
[0100] One example of this knowledge node is illustrated
in FIG. 6C. In this example, the Graph Node includes nodes
containing information about the data elements in column A
in a table. In this example, column A contains alphanumeric
data elements, so the information about column A resembles

http://www.patentlens.net/

http://www.patentlens.net/

US 2008/0071748 Al

a CMAP object. However, the Graph Node also contains
CMAP objects calculated under additional conditions speci-
fied over columns B and C, belonging to the same table. The
node 610 contains a CMAP of column A without satisfying
any other condition. The presence of bit ‘1” at row 1, column
2 of node 610 indicates that column A contains a data
element having a string that has character ‘A’ at the second
position. Traversing to node 612 applies the condition
C=‘dom’, resulting in a CMAP of data elements in column
A that share a row with a data element in column C that
contains the string ‘dom’. Node 612 has a bit ‘0’ at row 1,
column 2, indicating that there is no data element in column
A with a string having ‘a’ at position 2 that satisfies the
condition C="dom’. A similar node 614 can be constructed
for the condition B>7. Nodes 612 and 614 can be further
combined in node 616, which contains information satisfy-
ing both C=‘dom” and B>7. Node 618 shows that similar
operations can be carried out for other query-like conditions.

Foreign Node

[0101] The scope of a Foreign Node may be two or more
columns in two or more tables. A Foreign Node may contain
information similar to that stored in DPNs and KNs, but
rather than being derived from the data elements of the table
to which is it associated, a Foreign Node may contain
information based on data elements of a different table. The
Foreign Node for a first data pack in a first table may have
information based on one or more second data packs in a
second table, the second data packs and the first data pack
having a relationship of interest, which may be a query-like
condition. The relationship of interest may be between rows
of data elements in the data packs rather than the data packs
in their entirety, but the Foreign Node may still be associated
with the data packs. In this way, the Foreign Node allows not
only the identification of data packs that contain data ele-
ments satisfying a certain column-to-column or table-to-
table relationship, but also provides information on the data
elements satisfying that relationship.

[0102] One example of this knowledge node is illustrated
in FIG. 6D. In this example, a simple database contains
Table 1 and Table 2, each having four rows of numeric data
elements (numbered 1 to 4), with data packs each containing
two rows of data elements. Table 1 contains columns A and
B while Table 2 contains column C. Consider the following

query:
T1.A=1 AND T1.B=T2.C

[0103] That is, the query seeks to find all instances in
column A where the data element has the value 1 and where
the value in the corresponding row in column B has an equal
value in column C. As shown by the lines linking elements
in column B to elements in column C, there are several
instances where T1.B=T2.C, and this may be indicated by
other knowledge nodes, such as the JPP object described
above. However, only row 1 has a data element in column
A equal to 1 where the value in column B has an equal value
in column C, as required by the query. A JPP object may
indicate rows 1, 2 and 4 without providing specific infor-
mation on the data elements, and direct access to the data
elements of all three rows may be required to resolve the
above query.

[0104] Foreign Nodes may allow information about col-
umn A to be stored in a KN associated with column C. In this

enabling INNOVATION

Mar. 20, 2008

example, for the top data pack 620 in column C, there are
two equal values in column B, namely in rows 2 and 4. The
corresponding values in column A are 2 and 0, respectively.
This information is used to create Foreign Node 624 for data
pack 620. Foreign Node 624 contains the minimum and
maximum values, and a histogram for column A for data
elements belonging to a row that satisfies the relationship
T1.B=T2.C. The Foreign Node 624 indicates that the mini-
mum value is 0, the maximum value is 2, and the presence
of the values 0 and 2 is indicated with a ‘1’ bit, the absence
of the value 1 is indicated with a ‘0’ bit. Similarly, for the
bottom data pack 622 in column C, the data elements of
interest in column A contain the values 0, 1, and 2. The
Foreign Node 626 for data pack 622 indicates that the
minimum value is 0, the maximum value is 2, and the
presence of the values 0, 1 and 2 is indicated with a “1” bit.
[0105] Thus, by considering the Foreign Nodes of Table 2,
it can be determined that the top data pack 620 does not
satisfy the query since there is no corresponding data
element in A with the value 1. Hence, only the data elements
of the bottom data pack 622 need to be considered, thus
decreasing the required amount of direct access to the data
elements.

Examples of Use of Knowledge Nodes

[0106] Examples illustrating the use of KNs 224 will now
be described. These examples are provided for the purpose
of illustration only. Assume there are two base tables, table
T and table X. Table T includes columns A, B and C (there
may be more in table T, but they are not relevant to the
example). Columns A and C contain numeric data. Column
B contains string data. Each of columns A, B and C in table
T is represented by 5 data packs for every column as
illustrated below:

TABLE T
Column A Column B Column C
(numeric) (string) (numeric)
Data pack 1 Data pack 1 Data pack 1
Data pack 2 Data pack 2 Data pack 2
Data pack 3 Data pack 3 Data pack 3
Data pack 4 Data pack 4 Data pack 4
Data pack 5 Data pack 5 Data pack 5
[0107] Table X includes columns D and E. Columns D and

E contain numeric data. Each of columns D and E in table
X are represented by 3 data packs for every column as
illustrated below:

TABLE X
Column D Column E
(numeric) (numeric)
Data pack 1 Data pack 1
Data pack 2 Data pack 2
Data pack 3 Data pack 3

Character Map (CMAP)
[0108]

SELECT MAX (A) FROM T WHERE B=‘good’;

[0109] Assume that the data pack 1 for column A has a
MAX=5, data pack 2 for column A has a MAX=2, data pack

Consider the following query:

http://www.patentlens.net/

http://www.patentlens.net/

US 2008/0071748 Al

3 for column A has a MAX=S, data pack 4 for column A has
a MAX=5, and data pack 5 for column A has a MAX=10.
For every data pack for column B, the function IsLike
(‘good’) is executed. Assume the following results: data
pack 1 for column B has a result=RS_ALL, data pack 2 for
column B has a result=RS_SOME, data pack 3 for column
B has a result=RS_NONE, data pack 4 for column B has a
result=RS_NONE, and data pack 5 for column B has a
result=RS_SOME.

[0110] Combining the above information about A and B
indicates the following:

[0111] Data pack 1 for column A has MAX=5, so no
decompression is needed because all data relevant (all
data records in data pack 1 for column match).

[0112] Data pack 2 for column A has a MAX=2, so
these records are ignored irrespective of the data in
column B since we already know that MAX(A) will be
at least 5 because of results from the data pack 1 on A.
Hence no decompression is needed.

[0113] Data packs 3 and 4 for column A are not relevant,
because these were excluded by the filter on column B
since there was no match on column B.

[0114] Data pack 5 for column A and B requires decom-
pression because the number of relevant values (all/
none) cannot be determined. For A some records have
A>5, and for B some of the records match, but it cannot
be said whether there is a match where A>5, and if so
the MAX (A) cannot be determined.

[0115] Thus, the final result of the query will be the
maximum of 5 (from data pack 1 on column A) and the result
of the analysis of data pack 5 (i.e., the maximum value
subject to the filter B="good’ for single records in the data
pack).

Pack-Pack Join (PPJ) and Value-Pack Histogram (HIST)
[0116] Consider the following query:

SELECT MAX (T.A) FROM T JOIN X ON T.C=X.D
WHERE T.B=‘good” AND X.E<S5;

[0117] The filter B="good’ may be applied in table T in the
same manner as in the previous example. Hence, only data
packs 1, 2 and 5 from table T are going to participate in the
calculations. Now for every data pack for column E in table
X we apply the HIST object’s function Is Value (5, n) where
n equals the maximum value for column E in table X (which
is determined from column E’s DPNs 222). Assume the
following results:
[0118] Data pack 1 for column E has a result of
RS_SOME,
[0119] Data pack 2 for column E has a result of
RS_ALL, and
[0120] Data pack 3 for column E has a result of
RS_NONE.
[0121] Therefore, data pack 3 for column E can be ignored
in further calculations as none of the records are relevant.
Going further to the JOIN operation, we know that the data
packs to be involved are data pack 1, 2 and 5 for column C
in table T, as well as data packs 1 and 2 for column D in table
X. Consider that JPP for T.C and X.D is given and it results
as follows for function GetValue (C’s data pack from table
T, D’s data pack from table X):
[0122] Data pack 1 on column C and data pack 1 on D
is false,

enabling INNOVATION

Mar. 20, 2008

[0123] Data pack 1 on column C and data pack 2 on D
is false,
[0124] Data pack 2 on column C and data pack 1 on D
is true,
[0125] Data pack 2 on column C and data pack 2 on D
is false,
[0126] Data pack 5 on column C and data pack 1 on D
is true, and
[0127] Data pack 5 on column C and data pack 2 on D
is false.
[0128] Thus, the results narrow down the column C’s data
packs which are going to participate in the calculation of
MAX(T.A) to data packs 2 and 5 because the elements of
data pack 1 are not going to occur in a joined table (neither
with elements of data packs 1 nor 2 for D). Hence, data
packs 2 and 5 for column A are decompressed and the
maximum is calculated subject to the filter B=*good’ in table
T.

Compression Algorithms

[0129] The compression of column data within data packs
221, as opposed to compressing entire columns, may yield
higher compression ratios than if an entire column where
compressed because of the ability to identify relationships or
redundancies within each data pack 221 that may not exist
over the entire column, thereby providing a basis for a
potential higher compression ratio within the data pack 221.
[0130] To compress a sequence of data elements, relation-
ships or redundancies are found between the elements. There
may be many possible relations, applicable to numeric
values, alphanumeric values, or both, non-limiting examples
of which are as follows:

[0131] 1. All numbers fall into the same range [min, max];
[0132] 2. Some values may appear frequently in the
sequence (frequent values);

[0133] 3. A group of bits (usually the highest, sometimes
the lowest) may be similar in all elements of the sequence or
may have highly non-uniform distribution;

[0134] 4. A group of bits at a given position in each
element may have highly non-uniform distribution;

[0135] 5. Repetitions may occur frequently;

[0136] 6. Neighbouring elements may be correlated;
[0137] 7. All elements may be divisible by the same
value>=2; and

[0138] 8. A few elements may take very different values

than the rest.

Filter Cascade

[0139] These relations/redundancies are utilized in filter-
ing and compressing the data using a series of compression
filter stages in a filter cascade, as illustrated in FIG. 7A, in
which the compression filter stages 703a-n are arranged, for
example, with the output of one compression filter stage
(e.g., 703a) providing the input to a subsequent compression
filter stage (e.g., 7035). The filter cascade may be provided
with an uncompressed data input 701. Each compression
filter stage 703a-n applies a data filter 702a-r and a com-
pression block 704a-n. Each data filter 702a-# in the series
may be designed to detect and filter out a different type of
relationship/redundancy in the data. At each data filter
702a-n, a description of the relationship/redundancy may be
sent as reconstruction data to be encoded by the compression
block 704a-n using a standard compression algorithm and

http://www.patentlens.net/

http://www.patentlens.net/

US 2008/0071748 Al

filtered from the data. The compression algorithm may be
different for each compression filter stage 703a-», and may
have different parameters, depending on the data filter
702a-n and/or the input data. Commonly used compression
algorithms apply arithmetic or range coding. Other suitable
codes include Shannon-Fano-Elias code, Shannon code,
Huffinan code, Rice code, Golomb code, Tunstall code, and
prediction by partial matching (PPM). The output of the
compression block 704a-n is then sent to the filter stream
708. The filter stream 708 may include the output of each
compression block 704a-n appended together. The filtered
data of compression filter stage 703a forms the filter output
706a of that compression filter stage 703a and may be sent
as the input of the next compression filter stage 7035. This
may be repeated for each compression filter stage 703a-» in
the series.

[0140] In some aspects, at the end of the filter cascade, the
final compression filter stage 7037 sends all of its data input
to the compression block 703#, so that it has no filter output.
Thus, at the end of the filter cascade, all the data may be
compressed and represented in the filter stream 708. Typi-
cally, the last compression filter stage 7037 in the filter
cascade may assume its input data has uniform distribution
and may compress all of its input data. The filter stream 708
may have an uncompressed information header at the start of
the compressed data, which stores information (e.g., in the
form of binary flags) indicating which compression filter
stages 703a-n were applied during compression. In some
aspects, this information header may be stored in the column
description file described above.

[0141] In some aspects, during decompression, two passes
through the filter cascade may be used. The first pass is from
the beginning to the end, in the same order as during
compression, to load the encoded descriptions of each
compression filter stage 703a-r from the filter stream 708.
The second pass is in the reverse order to reconstruct the
original data from the filter stream 708. Each data filter
702a-n may have its own reconstruction and/or decompres-
sion algorithm. Alternatively, the information header may be
designed to eliminate the need for the first pass of the two
passes described above.

[0142] Reference is next made to FIG. 7B which illus-
trates processing of data by the filter cascade for compres-
sion, and FIG. 7C which illustrates processing of data by the
filter cascade for decompression.

[0143] For compression (FIG. 7B), at step 710 the data
may be introduced to the filter cascade.

[0144] The next compression filter stage in the cascade
(i.e., the first compression filter stage in the case where the
data is first introduced) may be considered for effectiveness
at a step 712. In considering the compression filter stage, it
may be evaluated to determine whether using the data filter
of that filter stage improves the compression of the data.
Each filter stage may have its own method of evaluation that
evaluates or predicts the effectiveness of applying the data
filter. This will be discussed in greater detail further below,
with reference to some data filters. At a step 714 if the data
filter is found to provide acceptable or improved compres-
sion, then the compression filter stage may be selected to be
used and the process proceeds to a step 716. If not, the
compression filter stage may be not selected for use and the
process may return to step 712. What constitutes acceptable

enabling INNOVATION

Mar. 20, 2008

compression resulting in use of a particular filter stage may
be fully configurable depending on the design criteria of a
particular application.

[0145] At the step 716, the data filter is applied to the data.
Reconstruction information, which may include the relation-
ship/redundancies filtered out from the data, may be sent to
the compression block. While the step 716 may be only
arrived at if the data filter evaluated at the step 714 is
considered to provide a certain level of compression, in
some aspects steps 716-720 will always be executed for the
last compression filter stage, as described above with refer-
ence to FIG. 7A.

[0146] At a step 718, the reconstruction information is
compressed by the compression block of the filter stage, and
the compressed reconstruction information may be provided
to the filter stream. The remaining filtered data may be
provided as the filter output. The reconstruction information
may include information on how to reconstruct the input
data from the filtered data.

[0147] At astep 720, if there is a subsequent compression
filter stage to be evaluated or considered for use in the filter
cascade, then the filter output may be sent as the input data
for the next compression filter stage and the process returns
to step 710. If there are no more filters, the process ends. At
the end of the filter cascade, all the original data may be
compressed in the filter stream and the filter output may be
empty.

[0148] If there is a subsequent filter stage, but the filter
output is already empty, the subsequent filter stage may be
not used and the process may end. This may occur where the
data is redundant enough that removal of certain redundan-
cies filters all the data for inclusion in the filter stream, for
example, in data where all elements have a high frequency
of occurrence. Indication that the subsequent filter stage was
not used may be added to the filter stream or to the header
data, so that the data can be properly reconstructed during
decompression.

[0149] FIG. 7C illustrates an operation for decompression
of compressed data. At a step 740, the filter input may be
initialized to empty.

[0150] Next, at a step 742, the filter input may be provided
to the filter cascade. At the start of the decompression
process, the filter input may be typically empty. In some
aspects, the filter input may be initialized to contain some
data, for example where some of the data was already
decompressed or was not compressed. Next, at a step 744,
the filter cascade is applied in the reverse order to the order
described above for compression. In some aspects, the order
in which compression took place may be pre-set and known.
If the compression order is not known, this information may
be provided in an uncompressed header block associated
with the compressed data. The compression order may also
be provided in an information header (e.g. a column descrip-
tion file) associated with the compressed data file.

[0151] In some aspects, there may be a preliminary step
(not shown) in which the compressed data may be processed
by the filter cascade in the same order as during compres-
sion. This preliminary step allows extraction of data recon-
struction information, such as identification of which filter
stages were applied, for each filter stage from the filter
stream. This preliminary step may also partition the filter
stream into blocks of compressed data generated by separate
compression filter stages.

http://www.patentlens.net/

http://www.patentlens.net/

US 2008/0071748 Al

[0152] Next, at a step 746, the filter stream may be read by
the filter stage and the reconstruction information may be
extracted. The reconstruction information may be decom-
pressed by applying a corresponding decoding algorithm
according to the compression algorithm used. The recon-
struction information may be relevant only to the particular
filter stage being considered, or it may contain information
for other filter stages in the cascade, in which case only the
relevant information may be considered.

[0153] Next, at a step 748, the reconstruction information
is used to reconstruct the data from the filter stream. The
method of reconstruction may be unique to each filter stage.
If the filter stream has passed through the entire filter
cascade in reverse as appropriate, the data may now be fully
reconstructed. Otherwise, the data may be only partially
reconstructed. The fully or partially reconstructed data may
be written to the output of the filter cascade.

[0154] Next, at a step 750, if there is another filter stage in
the reverse cascade, the process proceeds to a step 752
where the output (e.g., the partially reconstructed data) of
the previous filter stage may be provided as the filter input
for the next filter stage. The process then returns to the step
742 to move to the next filter stage. If there are no more filter
stages in the reverse cascade, the output may now consist of
the fully reconstructed data and the process ends. In the case
where the compressed data is fully recoverable, the output
consists of fully reconstructed data that may be identical to
the original uncompressed data.

[0155] The filter cascade may be flexible in that it may
separate different types of redundancies which simplifies
filter design and implementation, may allow easy switching
on/off of some of the filter stages, and may allow the same
type of filter stage to be used several times in the series. In
some aspects, the order in which the filter stages are applied
may be varied, and may be dynamically varied. Some
examples of the types of the data filters that may be used are
described below. These examples are for the purpose of
illustration only. Some data filters may be used with numeric
data only, alphanumeric data only, or both:

[0156] 1. Min: subtracts the minimum of all data elements
from each element of the data, thus reducing the range of the
data; the value of the minimum is compressed and sent to the
filter stream. To reconstruct the data, the minimum value is
decompressed and added onto each element.

[0157] In evaluating whether to use this filter, typically the
Min filter may be applied if it reduces the range of the data
elements. In general, this means that if the data elements
have a non-zero, preferably positive minimum value, the
Min filter may be applied.

[0158] 2. GCD: determines the Greatest Common Divisor
(GCD) of all data elements, and divides each element by the
GCD; the value of the GCD is compressed and sent to the
filter stream. To reconstruct the data, each element is mul-
tiplied by the GCD.

[0159] Typically, the GCD filter may be applied if a GCD
exists. In general, this means that if the data elements have
a GCD greater than 1, the GCD filter may be applied.
[0160] 3. Diff: calculates a differenced sequence consist-
ing of differences between pairs of subsequent elements (i.e.,
between element n and element n+1), and sends the differ-
enced sequence to the next stage of compression. In some
aspects, the first element in the sequence is unchanged.
Values of differences may be taken modulo (max_value+1),
where max_value is the maximum value of all data ele-

enabling INNOVATION

Mar. 20, 2008

ments. The result is that any difference that is less than zero
will have max_value added to it, so they fall into the same
range as the original values, while data reconstruction is still
possible. The max_value is compressed and sent to the filter
stream.

[0161] Reconstruction of data filtered through the Diff
filter may be done as follows: the first element is unchanged,
so it is taken as-is; the second element is reconstructed by
adding the second element of the difference sequence to the
first element; the third element is reconstructed by adding
the third element of the difference sequence to the recon-
structed second element, and so on through the entire
difference sequence. If modulo was applied to the difference
sequence, this also should be reversed in order to recover the
data exactly. To do this, the max_value is decompressed
from the filter stream. Then any reconstructed element that
has a value greater than max_value will have max_value
subtracted from that element.

[0162] Determination of whether the Diff filter may be
applied may be typically based on calculations of the
entropy of the data with and without applying the filter. The
differences of the data are calculated and the entropy of the
differenced data is compared to the entropy of the original
data. If the entropy of the differenced data is smaller, then
the Diff filter may be applied. In order to speed up calcu-
lations, in some aspects, this determination may be based
only on a sample of the data. For example, only 5% of the
data may be differenced and used for entropy comparison. In
some aspects, the entropy may be calculated using only
certain bits of the data, for example the top 8 and bottom 8
bits separately. When only 8 bits are considered, only 256
different values may occur, which results in entropy calcu-
lations that are easier and more reliable. If all values in the
data are shorter than 16 bits, the number of bottom bits
considered may be appropriately decreased. If all values in
the data are shorter than 8 bits, only the 8 top bits may be
used to calculate entropy.

[0163] 4. PartDict: builds a partial dictionary of values
occurring in the sequence and uses it to compress the data
with a standard encoding algorithm, such as range coding
(RC). The frequency of each value in the dictionary may be
also stored to calculate probabilities for compression. The
dictionary is referred to as partial because only frequent
values are stored, meaning values having a number of
occurrences above a certain constant threshold, which may
be pre-determined. If a rare or non-frequent value occurs in
the sequence during encoding, a special escape symbol is
encoded and the rare value is left in the sequence, forming
the filter output for input to the next filter in the filter
cascade. Frequent values are removed from the data after
encoding. Before encoding of the data, the dictionary is
compressed sent to the filter stream. The encoded sequence
of frequent values is also sent to the filter stream.

[0164] Typically, determination of whether to apply the
PartDict filter may be based on a comparison of the com-
pressed data size after applying both the PartDict filter and
the Uniform filter (discussed below) and the compressed
data size after applying the Uniform filter alone. It may be
possible to predict the compressed data sizes for both cases
without actually carrying out the compression using math-
ematical techniques common in information theory, such as
by estimating the average code length (i.e., the size of each
compressed element) based on the entropy of the corre-
sponding probability distributions of symbols. If the pre-

http://www.patentlens.net/

http://www.patentlens.net/

US 2008/0071748 Al

dicted compressed data size after applying both the PartDict
and the Uniform filters is smaller than after applying the
Uniform filter alone, then the PartDict filter may be applied.
[0165] An example of compression using PartDict is
shown in FIG. 8. Input data 802 contains elements with
certain frequencies of occurrence. In this example, an ele-
ment is considered to have a high frequency of occurrence
if it occurs at least twice. Thus, frequent values are 2, 3 and
5; rare values are 1, 4 and 6. The frequent values are placed
in a dictionary 804 with their associated frequencies of
occurrence. Rare values 812 are assigned the symbol ESC.
The frequent values are removed from the input data 802 and
placed in a frequent value sequence 806 along with ESC
where the rare values 812 should occur. The probability
distribution stored in the dictionary 804 is used to encode the
frequent value sequence 806 using a standard coder 808,
applying an encoding algorithm, such as RC or arithmetic
coding (AC). The dictionary 804 and the coded frequent
value sequence are included in the filter stream 810. The rare
values 812 form the filter output 814.

[0166] FIG. 9 shows the decompression of this example.
The dictionary is decompressed from the filter stream 810.
The probability distribution from the dictionary 804 is used
with the coder 808 to decode and recover the decoded
frequent value sequence 816. The rare values 812 are
provided from the output of the previous filter in the
decompression process. The ESC symbols are replaced with
the rare values 812 to recover the reconstructed input data
818. This example is for the purpose of illustration only.
[0167] 5. TopBitDict: builds a full dictionary of a group of
the top bits of all elements of the data. The dictionary also
stores frequencies of occurrence of each group of top bits.
The dictionary is compressed and sent to the filter stream.
The top bits of each element of the data are compressed by
encoding with a standard compression algorithm such as
RC, using the probability distribution represented by the
dictionary. The encoded sequence of top bits is sent to the
filter stream. The lower bits of the elements are left in the
sequence, forming the filter output, and passed to the next
stage. The number of top bits used for encoding may be
chosen so as to minimize the predicted length of the com-
pressed data. Decompression is similar to that of PartDict.
Evaluation of whether to apply the TopBitDict filter may be
done using predicted compressed data size, similar to the
technique for the PartDict filter.

[0168] 6. LowBitDict: similar to TopBitDict, for the low-
est bits of each element.

[0169] 7. Outliers: considers the values of the elements
rather than their frequencies of occurrence. First, outliers are
detected in the data sequence by finding a small number of
elements which have much larger or much smaller values
than certain statistics (which may be dependent on the data
type) calculated for the rest of the elements. The threshold
for determining what is considered an outlier may be pre-
determined or it may be dynamically selected, depending on
the data. In some cases, the number of values that may be
considered outliers may be pre-determined. Then, the out-
liers are removed from the data sequence. The positions and
values of the outliers are compressed and sent to the filter
stream. The data sequence with the outliers removed forms
the filter output. Reconstruction of the data may be done by
decompressing the values of the outliers and their position
information and merging this information with the sequence
of non-outliers.

enabling INNOVATION

Mar. 20, 2008

[0170] Typically, determination of whether to apply the
Outliers filter may be done using predicted compressed data
size, similar to the technique for the PartDict filter. In some
aspects, entropy calculations may be performed to predict or
to evaluate the optimum number of values that may be
considered outliers.

[0171] 8. Uniform: assumes uniform distribution of the
data in the range of [0, max_value] and compresses all
elements of the data by encoding with a standard encoding
algorithm, such as RC. The filter output may be typically
empty, and this filter typically may be the last filter in the
filter cascade for compression.

[0172] In addition to the data filters described above, there
may also be a mechanism for detection of repetitions of the
same record. Before compression of the next record, it may
be checked whether it is the same as the previous record. If
so, it may be given a certain encoding, e.g., bit ‘1°. Other-
wise, bit ‘0’ may be encoded. Use of this mechanism may
improve the compression ratio and speed by 8%.

[0173] Compression filter stages containing the above-
described data filters may be applied according to the
ordering listed above, or the ordering may be dynamically
rearranged and some of the filter stages may be repeated
based on the intermediate results of the output from preced-
ing filter stages. Before applying a filter stage a check may
be optionally performed to determine if the filter stage
should be applied. This check uses the intermediate results
to determine whether for efficiency purposes the filter stage
should be applied, (e.g., if the associated relationship/redun-
dancy considered by the filter stage exists and if the appli-
cation of the filter would result in compression gains suffi-
cient to warrant the application of the filter, given the
associated performance costs of compression and decom-
pression).

Compression of NULL Masks and Binary Columns

[0174] The occurrences of 0 and 1 in the data column are
counted to calculate probabilities of 0 and 1 which are then
passed to a standard compression algorithm, such as Arith-
metic Coding (AC), which can yield a compression ratio of
2.6 to 1 on average. In some data packs there may be
correlations between neighbouring bits. To utilize this fact,
the sequence may be differenced. Entropy, a well-known
measure applied to probabilities, may be calculated for the
differenced sequence. If the entropy of the differenced
sequence is lower than the entropy of the original sequence,
the differenced sequence may be encoded instead of the
original sequence. This is similar to the Diff filter. Then,
during decoding, the reverse operation may be performed.
This modification may give an average compression ratio of
35t0 1.

String Compression

[0175] Strings may be also compressed using a compres-
sion algorithm selected for the string data type. As in the
case of numeric and binary data, the sequence of string
values taken from a given data pack (e.g., for a database
column keeping alphanumeric data) is first cleaned of
NULLSs and is then put through the filter cascade, as shown
in FIG. 7A. The output from each applied filter stage may
take the form of a sequence of string values. The general
scheme of the filter cascade while compressing and decom-
pressing data may remain the same as before.

http://www.patentlens.net/

http://www.patentlens.net/

US 2008/0071748 Al

[0176] The list of available filter stages for sequences of
string values remains open, as in the cases of other data
types. An example of a filter which is applicable to string
values is PartDict. The work of PartDict, both during com-
pression and decompression of a sequence of string values
may be similar to the case of numeric values. In some
aspects, strings may be compressed using an algorithm
based on Prediction by Partial Matching (PPM), which is
commonly used for text compression. PPM is an adaptive
technique. PPM attempts to predict the next symbol in a
string on the basis of the preceding symbols (i.e., the
context). PPM is discussed in detail in, for example, “Data
Compression” by David Salomon, 3rd edition, Springer-
Verlag, 2004, Chapter 2.18; and in “Introduction to Data
Compression” by Khalid Sayood, 3rd edition, Morgan-
Kaufmann, 2005, Chapter 6.3, which are incorporated herein
by reference in their entirety. PPM compresses strings using
a probability distribution for each symbol in a string based
on the preceding symbols. This probability distribution may
be updated continuously as more symbols are encountered in
the string. PPM may be used to compress strings using a
dictionary containing the probability distribution of each
symbol.

[0177] Some implementations of PPM attempt to predict
the next symbol using all preceding symbols as the context,
while other implementations use a fixed length context. If
this prediction is not possible, the context may be reduced by
removing a preceding symbol from the context. This may be
repeated until a prediction can be made, or until there are no
more symbols in the context. When no symbols remain in
the context, a fixed prediction may be made, which may be
based on an assumption of uniform distribution of all
possible symbols. When a never-before seen symbol is
encountered, an escape symbol may be used and a prede-
termined probability may be assigned to the new symbol.

[0178] Simply using PPM alone may be cumbersome
because of the large amount of memory required to store the
context, especially in the case where all preceding symbols
are used as the context. In such an implementation, search-
ing for a given context in an encoded part of the string would
give O(n?) complexity. Instead, a trie or suffix tree data
structure may be used to represent the string. These data
structures store the symbols in branching nodes in tree form.
These data structures permit faster context searching
through the use of pointers back to earlier nodes, such
pointers being known as suffix links. Use of a trie or a suffix
tree for implementation of PPM is known in the art, and
variations are possible. The probability distribution for use
in PPM may also be stored in the data structure, for example
as weights on the nodes of a tree. This probability distribu-
tion may be continuously updated as the symbols are pro-
cessed.

[0179] PPM has been used to compress a large portion of
text, such as an entire text file. To use PPM for compression
of a sequence of short strings, there are several approaches.
PPM may be used to compress each string separately,
however this method may not be able to exploit any simi-
larity between strings. Another method may be to concat-
enate the strings, perhaps separated by a special symbol, and
compress the result as a single string; however this method
may not be able to exploit information about string bound-
aries to improve compression. Another method may be to
modify PPM to hold a sequence of strings, instead of a single
string. In this modification, the data structure may be modi-

enabling INNOVATION

Mar. 20, 2008

fied to represent suffixes of all processed strings, and at the
beginning of compression of the next string, the context may
be reset to empty (e.g., the root node of the tree in the case
of a tree data structure).

[0180] Insome aspects, a Compact Directed Acyclic Word
Graph (CDAWG) data structure may be used to implement
PPM. A CDAWG is a data structure for storing alphanu-
meric data in a way that permits fast word searching with
decreased space requirements. CDAWGs have been used for
alphanumeric data storage. Aside from use in text searches,
CDAWGs have also been used in analysis of DNA
sequences in bioinformatics.

[0181] Usinga CDAWG as the data structure may provide
the advantages that the data is stored in a compact form, and
that the space requirements are minimized. The data in a
CDAWG may be stored in a compact form as in a suffix tree,
where the edges (i.e., the path between adjacent nodes) of
the tree may be labelled by more than one symbol, so that
moving between adjacent nodes may give more than one
symbol. The data tree in a CDAWG may be minimized as in
a Directed Acyclic Word Graph (DAWG), where equivalent
nodes of the tree are merged into a single node, thus
avoiding redundant nodes.

[0182] Certain implementations of CDAWG may require
input of all the symbols before the CDAWG is created. This
may be time-consuming and impractical where there is a
large amount of data. In other implementations, the
CDAWG may be created on-line (e.g., in linear time, as the
data is being read) using the algorithm disclosed in Inenaga
et al., “On-line construction of compact directed acyclic
word graphs”, Discrete Applied Mathematics 146(2):156-
179, 2005, which is incorporated herein by reference in its
entirety. By creating the CDAWG on-line, the alphanumeric
data may be read through one symbol at a time, and the
CDAWG may be created with suffix links, so that each
subsequent symbol can be efficiently added to the CDAWG.

[0183] The probability distribution of each symbol may be
also calculated and updated on-line as the data is being read,
thus creating a CDAWG that has the additional feature of
weights for each node and/or edge corresponding to the
probability or frequency of that node and/or edge. As each
symbol is read, the structure of the CDAWG may be
modified as needed, and the probability distribution of that
symbol may be updated. When a never-before seen symbol
is encountered, an escape symbol may be used and a
predetermined probability may be assigned to the new
symbol. In some aspects, when a new symbol is processed,
the CDAWG may be traversed to see if a node for the
symbol already exists. As the CDAWG is traversed, each
edge and/or node that is passed may have its weight or
probability distribution updated (e.g., by increasing the
weight). If the node that is needed does not exist, a new node
and an associated escape symbol may be created in the
CDAWG, thus changing the structure of the CDAWG. In
this way, a CDAWG containing probability distributions for
each symbol is created on-line. The probability distributions
can then be used as a dictionary for compression using PPM.

[0184] In some aspects, the dictionary created by the data
structure (e.g., suffix tree or CDAWG) may be recalculated
and reduced from time to time, to keep its size down where
storage space is limited. This may be using a process similar
to the PartDict filter, where strings or symbols with lower
frequencies may be pruned from the data structure.

http://www.patentlens.net/

http://www.patentlens.net/

US 2008/0071748 Al

[0185] PPM using CDAWG may offer an improvement
over PPM using suflix trees especially for compression of a
sequence of short strings, as commonly found in databases.
For such data, a CDAWG data structure may contain over 10
times fewer nodes and 5 times fewer edges, the memory
required may be 7-10 times less, and the compression speed
may be several times faster than if using a suffix tree.

[0186] In some aspects, more than one symbol may be
encoded in one step of the compression algorithm. This is
possible because in CDAWG and in suffix trees, an edge
may be labelled by several symbols rather than a single
symbol. In order to account for the situation where the string
to be encoded matches only the beginning part of an edge
label, the number of symbols matching the edge label may
also be encoded in addition to the choice of the edge. This
number may have highly non-uniform and bi-modal distri-
bution, which can be exploited to improve the compression
ratio.

[0187] Other possible implementation details include par-
tial updates of data frequencies, unbounded context length
(e.g., where all preceding symbols are used as the context),
constant frequency for the escape symbol (e.g., the escape
symbol may be given a probability assuming uniform dis-
tribution), implementation of exclusions (e.g., correcting the
probability distribution of a symbol in a certain context to
exclude occurrences that are not possible), and use of a
special start node in the data tree. Such implementations and
techniques are not discussed here in detail, but are common
in the art. Certain combinations of these details may provide
a better compression speed and/or ratio.

[0188] In some aspects, the data structure (e.g., suffix tree
or CDAWG) may be created when the data is first com-
pressed, and may be discarded after compression. The data
structure may be recreated every time the data is decom-
pressed.

Query Optimization

[0189] Query optimization refers to the optimal choice of
functions and ordering of functions to provide query results
in the shortest amount of time. Query optimization may
improve resolution of query results by decreasing the
amount of data packs 221 that need to be retrieved from a
storage medium, or that need to be accessed in memory.
Query optimization involves simulating potential query
execution plans to determine the optimal query execution
plan to answer a query. Query optimization does not actually
access or retrieve data, rather it uses information about the
number of data packs 221 that will need to be accessed or
retrieved to answer the query using DPNs 222 and KNs 224.
If the data itself is not accessed retrieved, the query plan
execution simulations may be substantially faster than the
time required to actually execute the plan. Thus, query
optimization in the RDBMS 200 may be closely related to
query execution. Query optimization may simulate not only
the overall candidate execution plans, but also the respective
parts or execution steps to locate and avoid bottle necks that
may occur in operations required to answer the query, for
example delays that may occur as result of a non-optimal
ordering of joining operations. During query optimization,
query execution steps may include first carrying out data-
base operations (e.g., sorting) using DPNs 222 and/or KNs
224 before carrying out the same operations on the indi-
vidual data elements. For example, the data packs 221 may

enabling INNOVATION

Mar. 20, 2008

first be sorted using their respective DPNs 222 before
sorting the data elements in each data pack 221.

[0190] Query optimization may be implemented by the
Query Optimizer 208 (FIG. 1), which may be a functional
program module. The Query Optimizer 208 may implement
a heuristic program which begins with a candidate plan for
the query execution plan, simulates the result, then uses the
simulated results to determine the amount of data that needs
to be accessed or execution time required by the candidate
plan for the query execution plan. The Query Optimizer 208
may then attempt another candidate plan to determine if
performance may be improved.

[0191] Query optimization may use techniques such as
rough set analysis (RSA) techniques to determine which
data packs 221 need to be accessed by analyzing the
information of the DPNs 222 of each data pack 221 and the
KNs 224 associated with each data pack 221. Query opti-
mization may use the concept of positive region, negative
region, and boundary region for dealing with data packs that
are fully relevant, fully irrelevant, and partially relevant
respectively. Data packs 221 determined to be in the positive
region (e.g., fully relevant) sometimes need decompression
if the information cannot be obtained directed from the DPN
222 or KN 224, although typically not. Negative region
(e.g., fully irrelevant) data packs 221 do not need decom-
pression. Boundary region (e.g., partially relevant) data
packs 221 usually need decompression, however there may
be some special cases where decompression is not required.
[0192] Query optimization may be carried out using rough
queries as execution steps. A rough query allows for query
results to be approximated using DPNs 222 and KNs 224. A
rough query used as an execution step in optimization may
help minimize the amount of direct data access and/or
decompression needed by identifying which data packs 221
may contain relevant data.

[0193] Query optimization operations generally may
include the following steps:

[0194] 1. Choose a candidate plan for the query execution
plan;
[0195] 2. Simulate the data usage of the candidate plan at

the level of data packs 221 using only estimates from the
KNs 224 and without accessing (i.e., decompressing) the
underlying data;

[0196] 3. Determining the potential usefulness of struc-
tures currently loaded in memory such as decompressed data
packs 221, DPNs 222, and KNs 224;

[0197] 4. Determining the data amount of data packs 221
that need to be accessed (i.e., decoded or decompressed and
loaded into memory), including possible cases when the
same data packs 221 need to be accessed multiple times,
and/or an estimate of the amount of time to execute the
query; and

[0198] 5. Repeating steps 1 to 4 for the next execution plan
candidates until the shortest execution time may be deter-
mined or a satisfactory execution time may be determined.
For example, a satisfactory execution time threshold can be
fixed based on historical or logged information about execu-
tion times of queries of comparable complexity or a timeout
(e.g., this could occur after a fixed number of heuristic steps,
or even before reaching it if there is no improvement in the
heuristic search). Alternatively, the minimum required
memory can be optimized (see step 4 above).

[0199] Each step in the above operation may be performed
taking into account the result of the previous steps. If there

http://www.patentlens.net/

http://www.patentlens.net/

US 2008/0071748 Al

is a series or conjunction of conditions calculated in series,
then records and data packs 221 which are excluded earlier
need not participate in the subsequent calculations.

[0200] Information in the KNs 224 and/or the DPNs 222
may be used in such a way as to optimize queries using
minimal memory. In the case of a query that involves
sorting, sorting may be performed using encoded or “token”
forms of the original values or, in the case of multi-column
sorting, vectors of values. Such tokens are generated based
on KNs 224 or DPNs 222 of data packs that are relevant or
partially relevant to a given query. Tokens replace the
original values or the vectors of values while sorting. Sorting
over tokens provides the same results as if the data were
sorted by the original values or vectors of values. KNs 224
and DPNs 222 or irrelevant data packs are generally not used
while producing the optimal token forms.

[0201] In one non-limiting example, where the KN 224 is
a CMARP object, as described above, a query may be to sort
strings. If the results of the query all contain character ‘x” in
the second position, then the second position may be ignored
when encoding strings into tokens, since this position has no
effect on the results of the frequent query. Similarly, if the
second position of the query result always contains only a
subset of characters (e.g., ‘X’, ‘y’, ‘z’ instead of the full
alphabet), then a smaller code may be used to encode this
position. Although this example describes CMAP-based
optimization of encoding for queries involving sorting,
similar encoding optimization may be carried out for other
KNs 224 and DPNs 222, for different data types. By
optimizing encoding at the level of the KNs 224 and the
DPNs 222 rather than at the level of data elements, it may
be possible to reduce memory requirements by exploiting
relationships and redundancies that are not apparent at the
level of individual data elements.

[0202] The DPNs 222 and the KNs 224 may be applied to
sorting optimization also in the context of splitting data to be
sorted into smaller portions that may be sorted separately
and then merged in an optimal way. In this way, the DPNs
222 and the KNs 224 may help in further minimizing the
size of the intermediate structures, such as those used for
sorting in memory. For example, instead of minimizing the
size of a single structure, the structure may be split into
smaller structures, which may be processed faster separately,
thus allowing for further memory optimization.

[0203] Information available in the DPNs 222 and the
KNs 224 may influence the choice of a method for accom-
plishing a given task, for example a joining or sorting
operation. If the method of accomplishing a task is already
selected, the way of using the DPNs 222 and the KNs 224
may differ in the case of different methods. In one example,
the DPNs 222 may be used to detect two or more portions
of data that may be sorted separately. Based on the DPNSs, it
may be found that the set of all data packs for a given
column may be split into subsets X and Y, where the
minimum of each of the data packs belonging to X is greater
than the maximum of each of the data packs belonging to Y.
There may be more such subsets than just two. If subsets X
and Y with such a strong property related to minima and
maxima of the data packs are not found, then the data packs

enabling INNOVATION

Mar. 20, 2008

may be split into several smaller subsets in such a way that
the merging of their elements sorted separately has a lower
cost.

Query Optimization Example

[0204] The following example is for the purpose of illus-
tration only. A partial example of a query optimization
procedure will now be described. First, assume that the
query to be resolved involves a joining of three columns, A,
B and C where A>7, B<6, and C=“YES”. During query
optimization, the first candidate execution partial plan may
first join A and B and determine that this requires 1,000 data
packs 221 to be accessed to answer the subquery of A>7 and
B<6. The Query Optimizer 208 may then generate a second
candidate execution partial plan where A and C are joined
and determine that the subquery of A>7 and C=“YES”
requires 100 data packs 221 to be accessed. The Query
Optimizer 208 may then generate a third candidate execu-
tion partial plan where B and C are joined and determine that
the subquery of B<6 and C=YES” requires 10,000 data
packs 221 to be accessed. In this case, the Query Optimizer
208 would choose to join the second candidate execution
plan where A and B are joined, which minimizes the number
of data packs 221 to be accessed, and then join the result
with C so as to minimize the number of data packs 221 that
need to be accessed to answer the query.

[0205] Hence, the query execution and optimization steps
may interact within each other unlike in conventional
RDBMSs. The query simulation performed during query
optimization partially executes candidate execution plans
and returns “intermediate results” to the Query Optimizer
208 for further analysis before continuing the execution of
the query, and provides the possibility of further execution
plan modifications if subsequent candidate plans improve
performance. Thus, unlike conventional query optimization,
the order in which subqueries are executed may be changed
based on the intermediate results. Conventional query opti-
mization and execution approaches typically use classical
indices, do not allow optimization during execution, and
require data to be accessed in the same order as in the query
execution plan created by the query optimizer.

[0206] KN information may be used for optimization and
specifying the query execution plan, for example, using
pack-to-pack joins to determine which data packs need to be
joined during execution, although KN information may also
be used before at the optimization level. During execution
itself, after the optimal plan is determined, DPNs 222 and
data packs 221 may be utilized to answer the query. For
example, the sums from particular data packs 221 may be
obtained from DPNs 222 if the query requires the sum over
some column.

Examples of Query Optimization Using Rough Queries

[0207] The following examples are for the purpose of
illustration only. An example of rough query and iterative
optimization for query optimization will now be described.
Consider the following data packs in table T:

TABLE T

Data Pack Al: Min = 3; Max = 25 Data Pack B1: Min = 10; Max = 30
Data Pack A2: Min = 1; Max = 15 Data Pack B2: Min = 10; Max = 20
Data Pack A3: Min = 18; Data Pack B3: Min = 5; Max = 50
Max = 22

http://www.patentlens.net/

http://www.patentlens.net/

US 2008/0071748 Al

[0208] The minimum and maximum values of each data
pack are stored in data pack nodes associated with each data
pack, and in this example the data pack nodes are not
compressed. The data pack nodes are included in the knowl-
edge grid for this data set. Now consider the query SELECT
MAX(A) FROM T WHERE B>15.

[0209] The first execution step is the following rough
query:

ROUGH MAX(A) FROM T WHERE B>15

[0210] Using the knowledge grid, the results are that all
data packs in column B are relevant, and that MAX(A) is at
least 18.

[0211] To determine whether the answer to the query may
be greater than 18, the next step is to identify the data packs
that are still of interest in exceeding the value of 18. The
following rough query is made:

ROUGH ID FROM T WHERE B>15 AND A>18

[0212] Here, ID is a command that returns the identity of
the row of a data pack, together with the status of that data
pack in terms of it being relevant or suspect for the specific
query. Because MAX(A) is at least 18, data packs A2 and B2
become irrelevant. Hence, this rough query returns the
result: 1S; 3S, where S denotes that the data pack is relevant
or suspect.

[0213] Instead of using ID, the second step may be carried
out using:

ROUGH A FROM T WHERE B>15 AND A>18

[0214] Where the result not only identifies relevant rows,
but also estimations of the values of A in each row: 1S
[3,25]; 3S [18,22].

[0215] The above information may be used to estimate
within which data pack the actual maximum is most likely
stored. This may be carried out using a heuristic algorithm
(e.g., greedy, randomized, evolutionary, or other Al-based
algorithms). Such an algorithm may be employed by the
command ORDER BY, which orders the rows by increasing
likelihood of relevance. So the following rough query may
be used instead as the second step:

ROUGH ID, A FROM T WHERE B>15 AND A>18
ORDER BY A

[0216] Inthis example, assume that the heuristic algorithm
finds data pack Al to more likely have a MAX greater than
A3. So the result is: 3S [18,22]; 1S [3,25].

[0217] Now the data in data packs Al and B1 are directly
accessed, which may include decompressing the data packs.
Taking advantage of the results of the ORDER BY execution
step, the data packs Al and B1 are accessed first. The next
query execution step is:

SELECT MAX(A) FROM T WHERE B>15 AND ID=3

[0218] Assume the result of this query results in the value
23. Rather than directly accessing the data of data packs A3

enabling INNOVATION

Mar. 20, 2008

and B3 with a similar query, a rough query may be carried
out to iteratively optimize the query. Thus, the next execu-
tion step is:

ROUGH ID FROM T WHERE B>15 AND A>23

[0219] Using the knowledge grid, the data pack node for
A3 shows that A3 does not contain any values greater than
23. Thus, the final result of the query is 23.

[0220] Thus the query optimization using rough queries
may prune the data packs of interest and may further identify
where relevant results are most likely to be found, in order
to reduce the amount of direct data access and data decom-
pression used. Rather than having to directly access each
data pack, the data pack nodes and/or knowledge nodes
included in the knowledge grid may allow a query to be
optimized using statistical and/or analytical information.
[0221] Now, consider the same table T which was used
above, and the following query:

SELECT A, MAX(B) FROM T GROUP BY A

[0222] Assume that the query execution steps include
creating a memory buffer of limited size (e.g., 5 positions)
and storing the grouping values of A, as well as the maxi-
mum value B for each group. The initial execution plan may
be to scan the column A to gain up to 5 distinct values and
to find the appropriate maximum values of B in each group.
Next, the buffer content is stored as a part of the query result
and the whole table T is searched again for values of A that
were not stored in the buffer previously. These passes are
repeated until all values in column A are grouped.

[0223] Using the knowledge grid, the optimal order of the
data packs may be determined by the rough query:

ROUGH ID FROM T ORDER BY MAX(A)-MIN(A)

[0224] (e.g., scanning begins from the data pack having
the minimal span between the maximal and minimal value
of A. The result is 3S, 28, 1S.)

[0225] The grouping buffer is filled by values of pack A3.
Since all 5 positions are already occupied, the pack A2
becomes locally irrelevant since it cannot contain any value
[18,22] on column A. Now, assume that the maximal values
of B for these groups are all larger than 40. In this case, Bl
also becomes irrelevant since it cannot change the already
known maximal values for these groups.

[0226] The first pass of the algorithm is concluded and all
records having value A in [18,22], including the whole pack
A3, become irrelevant for all further passes. At least four
data pack accesses (A2, A1, B2, B1) were avoided compared
to the situation where the knowledge grid is not used.
[0227] Incases where the knowledge grid indicates that all
rows in a packrow contain single values over each of the
columns used for grouping, the statistics on aggregated
columns stored in the knowledge grid (e.g., minimum,
maximum, and sum) may be directly used to populate the
result of grouping.

Join Query Optimization Using Knowledge Nodes Example

[0228] The following example is for the purpose of illus-
tration only. An example of a join query and optimization of
the query execution using JPP, HIST, CMAP and other
information stored in the DPNs will now be described.

http://www.patentlens.net/

http://www.patentlens.net/

US 2008/0071748 Al

Consider the tables T1 and T2, consisting of 10 and 8 data
packs, respectively, and the query:

SELECT T1.A FROM T1 JOIN T2 ON T1.K=T2K
WHERE T2.B>10

[0229] Assume that using the knowledge grid, data packs
B1, B2 and B3 may be identified as irrelevant. Assume also
that JPP Knowledge Node exists for T1 and T2 and its
contents is as follows:

T1

™ 1 1 1 0 0 0 1 1 0 0

o 1 1 1 0 0 0 1 0 0

0 0 0 0 0 0 1 1 0 0

0o 1 0 0 0 1 1 1 0 0

0 0 0 1 1 1 1 0 0 0

11 1 1 1 1 0 0 0 0

1 0 o0 0 0 1 1 1 0 0

1 0 o0 0 0 0 0 0 1 1
[0230] If there is no JPP Knowledge Node calculated, its

contents may be approximated based on data pack nodes
(e.g., minimal/maximal values of the pairs of packs), HIST
or CMAP. The way of initializing the local JPP node for a
query is not needed for the example.

[0231] Given the information that B1, B2 and B3 are
irrelevant, the modified JPP node for the query is prepared
as follows:

T1

T2

—_—_—_—0 0000
coO—~O—O0OO
co~o0oo0oocoO
oCOoO~H~,OOOCO
co~mR,OOOCO
O =0 OO
O, ORR,OOO
O~ OO~ O OO
—oo0o0coooo
—o o000 OO

[0232] To determine the final answer, a joining of columns
T1K and T2.K is performed. Assume that the general
execution plan for joins includes several steps, each of the
steps including selection of subsets of potentially joinable
rows from T1 and T2, ordering them by values of joining
columns, and then matching column values to enlist a part
of a solution. The decomposition of the joining process into
steps may be done in such a way that every pair of rows
matched in one step may not be matched in any further step.

[0233] Assume that a cost function value may be deter-
mined for all steps. The cost may be dependent on the size
of ordered data, the number of opened data packs, and other
factors influencing the total execution time and which are
determinable based on the JPP node.

[0234] A heuristic, incremental decomposition of a joining
operation into steps may be performed to minimize the total
cost. Assume that the cost of joining n data packs with m
other data packs is (n log n+m log m+16(n+m)) and that any
sorter for which n+m>10 will not fit in memory and an
additional penalty is added in this case. For the example

enabling INNOVATION

Mar. 20, 2008

above, a heuristic optimizer may propose the following
steps:
[0235] join packs 1, 2 from T1 with 4, 5, 6 from T2;
[0236] join packs 1, 9, 10 from T1 with 8 from T2;

[0237] joinpacks3,4,5,6,7 from T1 with 5, 6 from T2;
and

[0238] join packs 6, 7, 8 from T1 with 4, 7 from T2.
This execution plan is highlighted in the table below:

(] [(o [[[[
(] [(oo o [[[
(] [(oo o [[[]

[0239] This query optimization using rough information
stored in the local JPP node, gathering information from
both one-dimensional dependencies and join conditions,
may minimize the total cost of joining tables. The cost may
be minimized in all aspects, including the number of data
packs accessed, the number of times the accessed data packs
are accessed, the size and speed of intermediate structures,
and known memory constraints may be addressed.

Data Structure

[0240] FIG. 10 illustrates the organization of the data
within the RDBMS 200. In system 1000, data storage may
be separated into three primary components: a database
1004 which may be either distributed or partitioned as
shown or undistributed, a local cache 1002 database engine
invocation (e.g., a temporary cache folder on the local
HDD), and a central repository 1006. All of these data stores
1002, 1004, and 1006 may be located on different devices,
however the database 1004 and central repository 1006 are
sometimes stored together. Every KN 224 may be repre-
sented by one file in the central repository 1006.

[0241] In some aspects, the type and parameters of each
KN 224 may be encoded in its file name. In some aspects,
each KN 224 may have a file name with the format:

XXXXXX.ab.c.d.ef.ghrsi

where XXXXXX is a 6-character type identifier; a, b, ¢, d,
e, f, g, h are numbers which identify objects and optionally
may be type-dependent; and .rsi identifies the file as a KN
224. The repository 1006 may contain a definition file that
describes its contents, and the definition file may have a file
name of the format: rsi_dir.rsd.

[0242] The central repository 1006 may use periodic
maintenance to check for the following possible inconsis-
tencies:

[0243] i.) whether there is a .rsi file not described in a
repository definition file. If so, the .rsi file should be
removed;

[0244] ii.) whether the definition file contains entries
which do not match any existing file. If so, these entries
should be removed or a matching file should be scheduled
for creation;

http://www.patentlens.net/

http://www.patentlens.net/

US 2008/0071748 Al

[0245] iii.) whether the KNs 224 are locked (e.g., marked
as “working” as described below), but no client application
202 is using these KNs 224. If so, these KNs 224 should be
unlocked.

[0246] The central repository 1006 may be accessible by
multiple client applications 202 (FIG. 1) (e.g., multiple
users) simultaneously, so the central repository 1006 may
allow parallel access. To accommodate multiple client appli-
cations 202, a file locking mechanism may be used. KNs 224
may be typically small and may be loaded entirely to
memory in which case access to them may be exclusive, for
example only one process may read or write a particular KN
224 at one time. A method for resolving sharing conflicts
may be as follows:

[0247] i.) when writing to a KN 224 is in progress, then if
a first process tries to open a KN 224 that is being written
by a second process, access of the first process to the KN 224
may be denied;

[0248] 1ii.) when a KN 224 increases in scope so old data
is still valid, then if the information stored by the Knowledge
Grid Manager 220 is obsolete (e.g., because the data pack(s)
on which the KN 224 is based has been increased in scope),
the KN 224 may be loaded into memory and the KN 224
may be updated after being loaded;

[0249] iii.) when a KN 224 decreases in scope so old data
may not be valid, then if the information stored by the
Knowledge Grid Manager 220 is obsolete (e.g., because the
data pack 221 on which the KN 224 is based has been
decreased in scope), the KN 224 may be not loaded into
memory and the operations may proceed without the KN
224 by proceeding to access the DPN 222 or data in the
respective data pack 221;

[0250] iv.) when a new KN 224 is created which supple-
ments but does not replace an old KN 224, then if the
information stored by the Knowledge Grid Manager 220 is
obsolete (e.g., because there is a new KN 224), the older KN
224 may be loaded into memory.

[0251] Unlike conventional database indices which cannot
be accessed once the underlying data has changed unless the
database indices have themselves been updated (typically,
data and database indices must be updated together, absent
which the data cannot be accessed), data packs 221 and
DPNs 222 in the RDBMS 200 may be updated indepen-
dently of any associated KNs 224. This allows updated data
in data packs 221 to be accessed almost immediately
whereas associated KNs 224 may not be available depend-
ing on whether such objects have been updated. This may be
advantageous in that some KNs 224 may be time consuming
to update. Therefore, KNs 224 which are quicker to update
may be updated shortly after the underlying data pack 221,
while more time consuming KNs 224 may be updated at a
convenient time such as when the RDBMS 200 is less
active.

[0252] When a new Knowledge Grid Manager 220 task is
scheduled, it may be written in a repository definition file. To
write to the definition file, the file may be reopened in
exclusive mode, after which it may be read. If the file does
not yet contain the desired task, the task may be added and
the file may be written to disk and then unlocked. A similar
procedure may be used when an Knowledge Grid Manager
220 decides to execute a scheduled task: first, the definition
file may be opened exclusively to read the task definition,
assuming it is still available, then the task may be marked as
“working”, the file may be written back to disk and

enabling INNOVATION

Mar. 20, 2008

unlocked. Meanwhile, the KN object file may be locked and
its recalculation may start. After a successful object update,
the repository definition file may again be locked and
updated as the task is removed from the schedule.

Tiered Data Warehouse Architecture

[0253] FIG. 11 illustrates a tiered data warehouse system
1100. The system 1100 may include a primary warehouse
1102 coupled to an archival secondary warehouse 1112 via
a Tiered Warehouse Management Console 1107. Between
the primary warehouse 1102 and the secondary warehouse
1112 are the import/export modules, collectively 1103, that
facilitate data transfer between the primary warehouse 1102
and the secondary warehouse 1112. The primary warehouse
1102 may include a RDBMS 200 coupled to a database
including one or more base tables each including one or
more data records. The RDBMS 200 may include a con-
ventional RDBMS, for example such as that provided by
MySQL®, Teradata™, Oracle®, etc.

[0254] One or more users may access the primary ware-
house 1102 via respective client applications 1104 imple-
mented on user terminals (not shown). A SQL-based inter-
face may be provided by the client application 1104 to
access the primary warehouse 1102 using standard SQL
query tools. The system 1100 may optionally include one or
more of a listener 1106 which monitors and stores queries
(e.g., SELECT statements) or alternatively queries are
extracted from the primary warehouse 1102 and/or second-
ary warehouse 1112 log files. The resulting query log 1118
may be provided to the Query Log Analyzer 1120.

[0255] Users accessing the secondary warehouse 1112
may use the same client application 1104. A SQL-based
interface may be provided by the client application 1104 to
access the secondary warehouse 1112 using standard SQL
query tools. Unlike the primary warehouse 1102, the sec-
ondary warehouse 1112 may include an RDBMS 200
coupled to a database including one or more data packs 221
each associated with basic analytical information in the form
of DPNs 222 and having associated therewith advanced
analytical information in the form of KNs 224.

[0256] The Query Log Analyzer 1120 may be a functional
program that analyzes query information collected in the
raw query logs 1118 to determine the usage of data by users
over a given time period within the primary warehouse 1102
and secondary warehouse 1112. The Query Log Analyzer
1120 analyzes the frequency of data usage or access within
the primary warehouse 1102 and secondary warehouse 1112.
Alternatively, specific query statistics need not be recorded.
Instead of maintaining specific statistics, an approximation
of the queries on specified data (e.g., data ranges based on
time or some other factor) using a satisfactory statistical
sampling of queries may yield faster results and still provide
the desired information on user queries. The Query Log
Analyzer 1120 may also identify the user who executed the
query, the tables and columns and the manner in which the
columns where referenced within the query (e.g., part of the
result set, used in JOIN criteria or used for filtering or sorting
results).

[0257] The Query Explorer 1109 allows a user to examine
the results of the Query Log Analyzer 1120 that are stored
in the query usage statistics 1108. Depending on the fre-
quency of data usage and pre-determined performance cri-
teria, the Query Explorer Module 1109 may identify candi-
date data in the primary warehouse 1102 that may be moved

http://www.patentlens.net/

http://www.patentlens.net/

US 2008/0071748 Al

to the secondary warehouse 1112 to improve the perfor-
mance of the system 1100. The Tiered Warehouse Manage-
ment Console 1107 may manage the tiered environment,
may identify candidate data via the Query Explorer 1109 in
the primary warehouse 1102 that may be moved to the
secondary warehouse 1112, and may manage the data move-
ment (e.g., data migration) process, using the service of the
Job Management Service 1105, which coordinates the
activities of standard import and export utilities 1103 pro-
vided by the primary and secondary warehouse 1102 and
1112. The Job Management Service 1105 uses encoding
operations similar to the operations 300 described above
when exporting data from the primary warehouse 1102 to
the secondary warehouse 1112. Base tables from the primary
warehouse 1102 are encoded and stored in data packs 221
with DPNs 222 and KNs 224 in the secondary warehouse
1112.

[0258] The performance criteria of the Tiered Warehouse
Management Console 1107 may specify an access frequency
(e.g., in terms of % usage in a given time interval), relative
access rate of selected data, or other pre-defined conditions
which identify data in the primary warehouse 1102 as being
suitable for transfer and archiving in the secondary ware-
house 1112. The user may be allowed to specify parameters,
for example the user may specify that only 10% of data
should be left in the primary warehouse 1102. In this case,
the Tiered Warehouse Management Console 1107 may
search for the 10% or some other suitable percentage which
is most frequently used in queries to keep in the primary
warehouse 1102 and migrate the remainder to the secondary
warehouse 1112, and may express the most active 10% using
predefined time dimension ranges. Typically, data access in
the primary warehouse 1102 may be most frequent with new
or freshly added data. As data ages in the primary warehouse
1102, it typically becomes accessed less and less. In accor-
dance with some implementations, once data access falls
below some predetermined threshold, for example if a base
table is accessed less than once a month, the data may be
selected for archiving, (e.g., to be transferred to the second-
ary warehouse 1112). The conditions and thresholds for
archiving are variable and may be set to optimize the
performance of the overall system 1100.

[0259] The Query Log Analyzer 1120 also analyzes the
usage of data in the secondary warehouse 1112 using infor-
mation collected by its respective listener and/or query log.
If data in the secondary warehouse 1112 is being accessed
more frequently, it can be exported back from the secondary
warehouse 1112 back to the primary warehouse 1102 to
satisfy the relevant performance criteria of the system 1100.
The Job Management Service 1105 may use decoding
operations similar to those described above when exporting
data from the secondary warehouse 1112 to the primary
warehouse 1102. Data packs 221 from the secondary ware-
house 1112 are decoded to the underlying base tables to be
exported back to the primary warehouse 1102.

[0260] The Query usage statistics 1108 may also be used
to optimize the KNs 224 in the database of the secondary
warehouse 1112 so as to find the optimal KNs 224 based on
query patterns, using an approach similar to the Knowledge
Grid Optimizer 240 described above. The Query Explorer
Module 1109 may also be used to analyze queries to
understand how users are relating data thereby enabling
further analysis of the data. Using this query information,
reports or other information about data usage may be used

enabling INNOVATION

Mar. 20, 2008

to better organize or use the data. In addition to analyzing
query data usage with respect to time dimensions, query data
usage may also be estimated with respect to other dimen-
sions. For example, it may be possible to detect that user
group X runs queries over a much wider time ranges than
user group y, or that column A is the only column accessed
in table T by user group z. Similarly, the Query Explorer
1109 may also indicate how column data is referenced in
queries, enabling better tuning of the primary warehouse
1102. For instance if tables are frequently joined, perhaps
the tables should be combined. If a column is frequently
used for filtering, an index may improve query speed.
[0261] The tiered architecture of the system 1100 seeks to
address the problem that many data warehouses operate at or
near capacity, and that the amount and detail of data being
stored is ever increasing. While adding storage capability
may accommodate increasing amounts of data, it may be
costly and may not improve system performance or respon-
siveness. In addition, many database management systems
have limits on how much data can be handled and managed
to ensure performance levels are reasonable. The tiered
architecture of the system 1100 allows less frequently used
data, typically older data, to be removed from the primary
warehouse 1102 to a secondary warehouse 1112 where the
data can be compressed to reduce storage requirements. The
system 1100 also allows for the restoration of data from the
secondary warehouse 1112 to the primary warehouse 1102,
if desired. However, in many cases, users simply do not have
the disk space to accommodate large data set restores,
presenting another advantage of the tiered warehouse
approach.

[0262] In accordance with the tiered architecture of the
system 1100, the primary warehouse 1102 may be imple-
mented using an RDBMS 200 suitable for handling larger
volumes of users efliciently, and configured to support a
large number of reports that are executed regularly (e.g.,
daily, weekly, monthly, or annually). In this way, the primary
warehouse 1102 may be used to reference more current data,
for example such as the last two years. The secondary
warehouse 1112 may be used to reference older data, which
typically supports more analytical functions such as where
long term histories are required to determine trends or
statistical analyses. In this way, the types of queries per-
formed on the primary warehouse 1102 and secondary
warehouse 1112 may differ in terms of database tuning.
[0263] However, the tiered architecture allows short-term
functions (e.g., reporting) to be implemented on the primary
warehouse 1102 while analytical functions may be imple-
mented on the secondary warehouse 1112. This may sim-
plify data access and may allow improved tuning of the
entire system 1100, which may improve overall performance
and lowering costs by implementing a portion of the system
1100 on a lower cost, secondary warehouse 1112 of com-
pressed data. In addition, using KNs 224 representations in
the secondary warehouse 1112 where analytical type queries
are more common may provide synergies in that the answer
to analytical queries may be found directly in the DPNs 222
and KNs 224 themselves, negating the need to access the
underlying data. Many statistical results are pre-calculated
and stored with the DPNs 222 and/or KNs 224.

[0264] FIG. 12 illustrates a tiered data warehouse system
1200. The system 1200 is similar to the system 1100 in that
it may include a primary warehouse 1206 for “current data”
or more frequently accessed data, and a secondary ware-

http://www.patentlens.net/

http://www.patentlens.net/

US 2008/0071748 Al

house 1208 for “older data” or less frequently accessed data
which may be compressed in data packs 221 and which
contains DPNs 222 and KNs 224. However, the system 1200
also incorporates a Seamless Query Module 1204 and Uni-
fied Knowledge Grid 1210 for the primary warehouse 1206
and the secondary warehouse 1208. The Seamless Query
Module 1204 includes information about the data of the
primary warehouse 1206 and the secondary warehouse 1208
to provide a seamless query interface to a user via a client
application 1202. A user using the client application 1202
may be provided with a SQL query interface to perform
queries without regard to whether the data referenced by the
query is stored in the primary warehouse 1206 and/or
secondary warehouse 1208. The underlying tiered architec-
ture of the system 1200 may be invisible to the user.
Depending on the query parameters, the Seamless Query
Module 1204 may determine whether the referenced data is
in the primary warehouse 1206, secondary warehouse 1208,
or in rare cases both. The Seamless Query Module 1204 then
engages the respective database engine of the primary
warehouse 1206 and/or second warechouse 1208, as neces-
sary.

[0265] Although the methods and systems of the present
disclosure are described in the context of data packs 221 and
DPNs 222, the concept of a knowledge grid using statistical
data elements may be created also for other database sys-
tems based on a conventional database having base tables
and conventional database indices without the need of
storing data packs 221 and DPNs 222.

[0266] FIG. 13 illustrates a computing device architecture
1300 that may be used with the systems described. The
computing device architecture 1300 may be representative
of the client application 202, or any of the computing
devices, servers, or computers described above. The com-
puting device 1300 generally may include a bus 1301, a one
or more than one microprocessor or processor 1302, a
memory 1304, a display 1306, one or more user input
devices 1308, and a communication interface 1309, which
may all be coupled to the bus 1301. The computing device
1300 may additionally include a display device (not shown)
for communicating an output to a user. In one example, the
user input devices 1308 may be a keyboard or pointing
device such as a mouse. The communication interface 1309
provides an interface for communicating with a network
1326. An operating system 1310 or applications 1312 run on
the processor 1302. The memory 1304 includes Random
Access Memory (RAM) 1316, Read Only Memory (ROM)
1318, and a disk 1320. In one example, the data processing
system 1300 may include either a client or a server. Any of
the software modules or components mentioned above may
be stored in the memory 1304 for execution by the processor
1302.

[0267] In accordance with some aspects, there is provided
a method for encoding column data from a base table in one
or more data packs, the base table including one or more
columns of data, the method including: selecting a column
in the base table; selecting a compression algorithm based
on a data type in the column; compressing data from the
column using the selected compression algorithm; and stor-
ing the compressed column data in a data pack.

[0268] In some aspects, each of the two or more columns
of data may be at least one of: a string, a numeric value,
floating point value, and binary.

enabling INNOVATION

Mar. 20, 2008

[0269] In some aspects, the method may further include,
before compressing the column data: generating a null mask
representing the positions of null and non-null value posi-
tions in the column; generating a reduced data set from the
column data, including removing the null position from the
column data; and wherein the data from the column com-
pressed in the compression step is the reduced data set, and
wherein the null mask is stored in the data pack the com-
pressed column data.

[0270] In some aspects, the data warehouse system may
include more than one computing device accessing data, the
KNs 224 and the DPNs 222 stored in a common disk space.
In one example, one computing device may process one user
query and may access the KNs 224 updated by another
computing device.

[0271] These and other aspects and features of the present
disclosure will become apparent to persons of ordinary skill
in the art upon review of the above detailed description,
taken in combination with the appended drawings.

[0272] While the present disclosure is primarily described
as a method, a person of ordinary skill in the art will
understand that the present disclosure is also directed to an
apparatus or system for carrying out the disclosed method
and including apparatus parts for performing each described
method step, be it by way of hardware components, a
computer programmed by appropriate software to enable the
practice of the disclosed method, by any combination of the
two, or in any other manner. Moreover, an article of manu-
facture for use with the apparatus, such as a pre-recorded
storage device or other similar computer readable medium
including program instructions recorded thereon, or a com-
puter data signal carrying computer readable program
instructions, may direct an apparatus to facilitate the practice
of' the disclosed method. It is understood that such apparatus,
articles of manufacture, and computer data signals also come
within the scope of the present disclosure.

[0273] The embodiments of the present disclosure
described above are intended to be examples only, for the
purposes of illustration and not intended to be limiting.
Those of skill in the art may effect alterations, modifications
and variations to the particular embodiments without depart-
ing from the scope of the present disclosure. In particular,
selected features from one or more of the above-described
embodiments may be combined to create alternative
embodiments not explicitly described, features suitable for
such combinations being readily apparent to persons skilled
in the art. The subject matter described herein in the recited
claims intends to cover and embrace all suitable changes in
technology.

What is claimed is:
1. A method of storing data, the data having individual
data elements, the method comprising:
grouping a plurality of data elements of a same data type
into at least one data unit;
gathering information about the data elements of the at
least one data unit into at least one information unit;
and
storing the at least one data unit and the at least one
information unit on computer readable storage device,
wherein each of the data units has at least one correspond-
ing information unit.
2. The method according to claim 1, wherein the overall
size of the stored information units does not exceed 1% of
the overall size of stored data units.

http://www.patentlens.net/

http://www.patentlens.net/

US 2008/0071748 Al

3. The method according to claim 1, wherein a single
information unit is associated with a single data unit, and
wherein information stored in the single information unit
corresponds to contents of the associated single data unit.

4. The method according to claim 1, wherein the infor-
mation in the at least one information unit corresponding to
the data unit includes at least one of:

a minimum value of the data elements in the data unit,
wherein the minimum value is computed according to
the data type;

a maximum value of the data elements in the data unit,
wherein the maximum value is computed according to
the data type;

a number of non-null values found within the data ele-
ments in the data unit; and

a total value of the data elements in the data unit, where
the total value is computed according to the data type
and the total value is not computed where the data type
is not suitable for adding.

5. The method according to claim 2, wherein the at least
one data unit includes numeric data elements and a range of
the numeric data elements is divided into a plurality of
intervals with indications of whether or not values of the
numeric data elements occur within the intervals being
stored in the corresponding information unit.

6. The method according to claim 5, wherein there are
1024 or less intervals, not counting the first and the last
interval, the first and the last intervals not being stored in the
corresponding information unit.

7. The method according to claim 5, wherein the intervals
have non-uniform interval ranges and the interval ranges are
adjusted to the content of the numeric data elements such
that ranges of the intervals with no data occurrences are
larger in size than ranges having data occurrences.

8. The method according to claim 2, wherein at least one
of the data units includes string data elements and informa-
tion in the corresponding information unit indicate whether
the data elements contain a given character in a given
position, the information being stored in the corresponding
information unit as a matrix of possible characters and
possible positions.

9. The method according to claim 8, wherein the infor-
mation unit includes up to a first 64 positions of each string
data element and wherein up to the first 8 positions are not
stored where all strings in the data unit have the same
characters at those up to 8 positions.

10. The method according to claim 1, wherein a single
information unit is associated with two or more data units of
the same data type, the information unit grouping data
elements of the two or more data units, and wherein the
information stored in the information unit corresponds to
relationships between data elements in the two or more data
units.

11. The method according to claim 10, wherein the
information in the information unit that is associated with
the two or more data units indicates whether there are
common data elements in the two or more data units.

12. The method according to claim 1, wherein the data
elements are arranged in a table having columns and rows,
each data unit having a number of data elements from a
single column of the table.

13. The method according to claim 12, wherein the data
units having data elements corresponding to the same rows
of the table are grouped into data unit groups, each data unit

enabling INNOVATION

Mar. 20, 2008

group having an identification number and the data elements
corresponding to the same row having the same position
within the data units of the data unit group.

14. The method according to claim 13, wherein a single
information unit is associated with a single data unit group,
the information being stored in the information unit includ-
ing at least one of statistics, relationships, dependencies, and
patterns observed for rows of the data elements belonging to
the single data unit group.

15. The method according to claim 14, wherein the
information unit associated with the data unit group is
structured as a directed acyclic graph having nodes, directed
edges, a root node, and directed paths from the root node to
the nodes, each directed edge corresponding to a data
condition based on at least one column of data, each directed
path corresponding to a conjunction of the data conditions
corresponding to the directed edges in the directed path, and
wherein a given node that is arrived at by a given directed
path includes information about the data elements of one of
the data units in the data unit group, the corresponding rows
of the data unit group satisfying the conjunction of data
conditions corresponding to the directed edges in the given
directed path.

16. The method according to claim 13, wherein a single
information unit is associated with a single data unit group
from a first table, and wherein information stored in the
information unit includes at least one of statistics, relation-
ships, dependencies, and patterns observed for rows in a
second table having data elements having one or more
relationships with the data elements of rows belonging to the
data unit group of the first table.

17. The method according to claim 13, wherein a single
information unit is associated with a first data unit group
from a first table and a second data unit group from a second
table, the information stored in the information unit repre-
senting relationships between the data elements of rows in a
data unit group in the first table and the data elements of
rows in a data unit group in the second table.

18. The method according to claim 17, wherein the
information in the information unit indicates whether there
are any common data elements in the data unit correspond-
ing to a column in the data unit group in the first table and
in the data unit corresponding to a column in the data unit
group in the second table.

19. The method according to claim 1, wherein the data
units contain up to 65,536 data elements.

20. The method according to claim 1, wherein the infor-
mation units are monitored for usage efficiency in resolving
queries, the efficiency being evaluated based on an overall
number of accesses to the data units that are accessed, where
more efficient information units result in less access to the
data units, information units having low efficiency being
deleted according to constraints including at least one of:

a maximum pre-determined amount of disk space for

storing all of the information units; and

a maximum pre-determined amount of memory used by

all of the information units.

21. The method according to claim 20, wherein new
information units are selected as candidates to replace
current information units using heuristic optimization algo-
rithms including at least one of: greedy, randomized, and
Al-based, the algorithms evaluating the candidate informa-
tion units based on a group of criteria including at least one

http://www.patentlens.net/

http://www.patentlens.net/

US 2008/0071748 Al

of: size of a candidate information unit and estimated
expected efficiency of a candidate information unit.

22. A method of processing a data query in a data
processing system, data in the data processing system
including a plurality of individual data elements, the data
elements being grouped and stored in at least one data unit,
information about the at least one data unit being gathered
and stored in at least one information unit, the method
comprising:

receiving the data query to be executed;

using the information in the at least one information unit

to optimize and execute the query;

resolving the data query; and

returning results of the data query for use by the data

processing system.
23. The method according to claim 22, wherein the data
query is selected from the group consisting of a SQL
statement and a SQL language extension.
24. The method according to claim 22, wherein the data
elements are arranged in a table having columns and rows,
the data units having a number of data elements from a
single column of the table.
25. The method according to claim 24, wherein the data
units having data elements corresponding to the same rows
of the table are grouped into data unit groups, each data unit
group having an identification number and the data elements
corresponding to the same row having the same position
within the data units of the data unit group.
26. The method according to claim 22, wherein resolving
the data query includes executing an execution plan, the
execution plan having a sequence of data processing opera-
tions, execution of each of data processing operations within
the execution plan further including the steps of:
using the information in the at least one information unit
to identify the data units containing the data elements
that are to be retrieved to complete the operation;

retrieving the data elements in the respective data units
needed to complete the operation;

completing the operation; and

if the completed operation is the last operation in resolv-

ing the data query, returning the results of the data
query for use by the data processing system and if the
completed operation is not the last operation in resolv-
ing the data query, returning intermediate results of the
operation for use by the remaining operations in the
execution plan.

27. The method according to claim 26, wherein there are
a plurality of available algorithms to perform a given data
processing operation, and wherein at least one information
unit is used to evaluate which of the available algorithms
will be used to perform the given data processing operation.

28. The method according to claim 26, wherein the
information in the at least one information unit is used to
perform a data processing operation on one or more of the
data units and to optimize the operation when performed on
the intermediate results of previous operations in the execu-
tion plan.

29. The method according to claim 28, wherein the steps
of retrieving the data elements in the respective data units
and completing the operation further comprises:

retrieving the data elements in at least a portion of the

respective data units to obtain a partial resolution to the
data processing operation; and

enabling INNOVATION

Mar. 20, 2008

using the partial resolution and the information in the at
least one information unit to re-identify any further data
units containing data elements that are to be retrieved
in order to complete the operation.

30. The method according to claim 29, wherein the steps
of retrieving the data elements in at least a portion of the
respective data units and re-identifying any further data units
are repeated until the partial resolution is sufficient to
complete the operation.

31. The method according to claim 30, wherein at least
one information unit is used to determine an ordering of the
data units to be accessed to complete the data processing
operation with a minimum number of the data units being
accessed.

32. The method according to claim 28, wherein the
information units are used to categorize the data units into
categories including:

data units that have no data elements relevant for further

resolving the data processing operation;

data units where all of the data elements in the data unit

are relevant for further resolving the data processing
operation; and

data units where the information in the respective infor-

mation units is insufficient to categorize the data units.

33. The method according to claim 31, wherein the
information stored in the information unit associated with
the data unit and for which all data elements were identified
as relevant for further resolving the data processing opera-
tion is used in resolving the data processing operation
without accessing the data unit.

34. The method according to claim 26, wherein the data
processing operations include sorting the data elements and
at least one information unit is used to generate a math-
ematical formula for replacing original data elements with
smaller-sized code values that are used instead of the origi-
nal data elements to perform the sort.

35. The method according to claim 34, wherein the sorting
operation is performed on string data, the information units
storing the information about occurrences of characters at
particular positions of the strings in the data packs that are
relevant to the data query, the information units being used
to generate a mathematical formula replacing actual char-
acters with the encoded values, and wherein the positions
detected as having the same character in all relevant data
units are omitted during coding and during sorting.

36. The method according to claim 26, wherein the data
processing operations include an aggregation operation, the
result of the data processing operation being a set of aggre-
gates of data, the aggregates being iteratively constructed in
parallel to accessing the data units, the ordering of con-
structing aggregates and accessing the data units being
optimized using at least one information unit.

37. The method according to claim 26, wherein the data
elements are arranged in at least one table having columns
and rows, the data units having a number of data elements
from a single column of the table, the data processing
operations including a join operation for joining two or more
tables of the data elements, the joining operation being
performed in stages using portions of the tables to be joined
resulting in reduced memory requirements to resolve the
query, the portions of the tables providing the most efficient
execution of the joining operation being determined using
the information in the at least one information unit, the

http://www.patentlens.net/

http://www.patentlens.net/

US 2008/0071748 Al

portions of the tables being defined as pairs of sets of data
unit groups from the two or more tables.

38. The method according to claim 26, wherein the data
processing operations include a sorting operation, the sort-
ing operation creating groups of disjoint data elements from
the data units that are to be sorted for resolving the data
query, the groups of the data elements being sorted sepa-
rately resulting in reduced memory requirements to resolve
the query, the groups of the disjoint data elements from the
data units being determined using at least one information
unit to provide more efficient execution of the sorting
operation.

39. The method according to claim 26, wherein there is a
plurality of candidate execution plans for resolving the data
query and the at least one information unit is used for
evaluating performance of the candidate execution plans and
for selecting a preferred candidate execution plan according
to the evaluated performance.

40. The method according to claim 37, wherein the
evaluation of the candidate execution plans is performed by
partially executing the candidate execution plans using the at
least one information unit and using intermediate results for
further evaluation of the execution plans.

41. The method according to claim 37 wherein the per-
formance is evaluated based on an estimation of the amount
of data units that have to be accessed, an estimation of the
amount of accesses to the data units to be accessed, and an
estimation of the sizes of intermediate structures used in
executing the candidate execution plan, and wherein the
amount of data units to be accessed, the amount of accesses
to the data units, and the sizes of the intermediate structures
are to be minimized.

42. The method according to claim 39, wherein the best
execution plan among the candidate execution plans is
chosen using heuristic optimization algorithms including at
least one of: greedy, randomized, and Al-based algorithms,
the algorithms evaluating the candidate execution plans
based on a group of criteria including at least one of: an
estimation of the amount of data units that have to be
accessed, an estimation of the amount of accesses to the data
units to be accessed, and an estimation of the sizes of
intermediate structures used in executing the candidate
execution plan.

43. The method according to claim 26, wherein further
information units are dynamically created while executing
the execution plan to reduce the time it takes to resolve a
data query.

44. The method according to claim 26, wherein the
information in the at least one information unit is dynami-
cally altered by a result of at least one of the data processing
operations in the execution plan to reduce the time it takes
to perform further data processing operations in the execu-
tion plan and to resolve a data query.

45. The method according to claim 26, wherein results of
one of the data processing operations are used to determine
parameters of subsequent data processing operations to
reduce the time it takes to resolve a data query.

46. The method according to claim 26, wherein the data
processing operations in the execution plan are defined using
a language of information queries, wherein the information
queries are resolved based on the information units, with no
access to the data units.

47. A data processing system for storing data, the data
having individual data elements, the system comprising:

enabling INNOVATION

Mar. 20, 2008

a server comprising:

a processor for controlling operation of the server;

a storage device coupled to the processor; and

a memory coupled to the processor, the server being
configured to:

group a plurality of data elements of a same data type
into at least one data unit;

gather information about the data elements of the at
least one data unit into at least one information unit;
and

store the at least one data unit and the at least one
information unit on the storage device,

wherein each of the data units has at least one corre-
sponding information unit.

48. A data processing system for processing a data query
comprising;

a server having:

a processor for controlling operation of the server;

a storage device coupled to the processor; and

a memory coupled to the processor,

the system including a plurality of individual data ele-

ments, the data elements being grouped and stored in at

least one data unit on the storage device, information

about the at least one data unit being stored in at least

one information unit on the storage device, the server

including a query module resident in the memory for

execution by the processor, the query module being

configured to:

receive the data query to be executed;

use the information in the at least one information unit
to optimize and execute the query;

resolve the data query; and

return results of the data query for use by the data
processing system.

49. A computer program product having a computer
readable medium tangibly embodying code for storing data
in a data processing system, the data having individual data
elements, the computer program product comprising: code
for grouping a plurality of data elements of a same data type
into at least one data unit;

code for gathering information about the data elements of

the at least one data unit into at least one information
unit; and

code for storing the at least one data unit and the at least

one information unit on the storage device, each of the
data units having at least one corresponding informa-
tion unit.

50. A computer program product having a computer
readable medium tangibly embodying code for processing a
data query in a data processing system, the system including
a plurality of individual data elements, the data elements
being grouped and stored in at least one data unit, informa-
tion about the at least one data unit being stored in at least
one information unit, the computer program product com-
prising:

code for receiving the data query to be executed;

code for using the information in the at least one infor-

mation unit to optimize and execute the query;

code for resolving the data query; and

code for returning results of the data query for use by the

data processing system.

http://www.patentlens.net/

